
Interpretation:
Three ways by which people have managed to obtain pure metals for use in making tools and other objects are to be described.
Concept introduction:
Pure metals are very important in our lives. They are used for making objects like tools, cars, wires, jewelry, bridges etc. Through the ages, humans have made great progress in extracting pure metals for various uses.

Answer to Problem 1E
Some processes used to extract pure metals include:
- Mining - Some metals like silver and gold have to be dug out directly from the Earth.
- Heating - Most metals occur in nature in combined state with other atoms. Metal compounds can be heated to give pure metals. When iron (III) oxide is heated to very high temperatures in the presence of charcoal, the oxygen in the compound is removed as carbon dioxide and solid iron is left behind.
- Electroplating- Electricity can also be used to extract pure metals from their ionic compounds. Copper can be extracted from a solution of copper sulfate by passing electricity through the solution. Copper ions move towards negatively charged nickel strip and deposits as pure metal on the strip. This process is called electroplating.
Explanation of Solution
Given information:
Pure metals can be extracted by various methods for use in making tools and other objects.
There are three main processes of extraction of metals.
- Mining - Some metals occur in pure state in nature as they are not very reactive metals. Such metals can be directly obtained by simply digging and finding them. This kind of activity is called mining. Gold and silver are extracted by this method.
- Heating - Most of the metals found on Earth occurs in combined state. So they have to be extracted from their compounds. The metal compounds can be heated to very high temperatures to yield metals. For example wheniron (III) oxide is heated to very high temperatures in the presence of charcoal, the oxygen in the compound gets removed as carbon dioxide and solid iron is left behind. With the help of construction of better blast furnaces many metals were extracted by this method.
- Electroplating - Electricity can also be used to extract metals from their compounds. For example copper can be extracted from a solution of copper sulfate by passing electricity through the solution. A simple circuit is set up with a battery connected to two nickel strips placed in a beaker of copper sulfate solution. Once the battery is hooked up one nickel strip acts as a positive terminal and other one acts a negative terminal. When the circuit is complete electrons move from negative to positive terminal. Copper sulfate dissociates into ions in the solution. Copper ions move towards negatively charged nickel strip and gains electrons to become elemental copper which then deposits as pure metal on the nickel strip. This process is called electroplating. In this way we can get pure copper from its compound. This method is used to coat a surface with a desired metal such as coins are coated with gold.
Some metals can be simply obtained through mining. Most metal atoms occur in nature in combined state with other atoms. Some metals can be extracted from their ionic compounds through heating and some can be extracted by using electricity.
Chapter U1 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Concepts of Genetics (12th Edition)
Applications and Investigations in Earth Science (9th Edition)
Campbell Biology in Focus (2nd Edition)
Campbell Biology: Concepts & Connections (9th Edition)
- Part 1. Aqueous 0.010M AgNO 3 is slowly added to a 50-ml solution containing both carbonate [co32-] = 0.105 M and sulfate [soy] = 0.164 M anions. Given the ksp of Ag2CO3 and Ag₂ soy below. Answer the ff: Ag₂ CO3 = 2 Ag+ caq) + co} (aq) ksp = 8.10 × 10-12 Ag₂SO4 = 2Ag+(aq) + soy² (aq) ksp = 1.20 × 10-5 a) which salt will precipitate first? (b) What % of the first anion precipitated will remain in the solution. by the time the second anion starts to precipitate? (c) What is the effect of low pH (more acidic) condition on the separate of the carbonate and sulfate anions via silver precipitation? What is the effect of high pH (more basic)? Provide appropriate explanation per answerarrow_forwardPart 4. Butanoic acid (ka= 1.52× 10-5) has a partition coefficient of 3.0 (favors benzene) when distributed bet. water and benzene. What is the formal concentration of butanoic acid in each phase when 0.10M aqueous butanoic acid is extracted w❘ 25 mL of benzene 100 mL of a) at pit 5.00 b) at pH 9.00arrow_forwardCalculate activation energy (Ea) from the following kinetic data: Temp (oC) Time (s) 23.0 180. 32.1 131 40.0 101 51.8 86.0 Group of answer choices 0.0269 kJ/mole 2610 kJ/mole 27.6 kJ/mole 0.215 kJ/mole 20.8 kJ/molearrow_forward
- Calculate activation energy (Ea) from the following kinetic data: Temp (oC) Time (s) 23.0 180. 32.1 131 40.0 101 51.8 86.0 choices: 0.0269 kJ/mole 2610 kJ/mole 27.6 kJ/mole 0.215 kJ/mole 20.8 kJ/molearrow_forwardCalculate activation energy (Ea) from the following kinetic data: Temp (oC) Time (s) 23.0 180. 32.1 131 40.0 101 51.8 86.0arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Rank the compounds in each group below according to their reactivity toward electrophilic aromatic substitution (most reactive = 1; least reactive = 3). Place the number corresponding to the compounds' relative reactivity in the blank below the compound. a. CH₂F CH3 F b. At what position, and on what ring, is bromination of phenyl benzoate expected to occur? Explain your answer. :0: C-O phenyl benzoate 6.Consider the reaction below to answer the following questions. A B C NO₂ FeBr3 + Br₂ D a. The nucleophile in the reaction is: BODADES b. The Lewis acid catalyst in the reaction is: C. This reaction proceeds d. Draw the structure of product D. (faster or slower) than benzene.arrow_forwardPart 2. A solution of 6.00g of substance B in 100.0mL of aqueous solution is in equilibrium, at room temperature, wl a solution of B in diethyl ether (ethoxyethane) containing 25.0 g of B in 50.0 mL 9) what is the distribution coefficient of substance B b) what is the mass of B extracted by shaking 200 ml of an aqueous solution containing 10g of B with call at room temp): i) 100 mL of diethyl ether ii) 50ml of diethyl ether twice iii) 25ml of diethyl ether four timesarrow_forward- Rank the following groups of compounds from most acidic (1) to least acidic (4). Place the number corresponding to the compound's relative rank in the blank below the structure. a. NO₂ NO₂ CH2CH2CH2CH2OH CH3 CH3CH2CHOH CH3CH2CH2CH2OH NO₂ CH3CHCH2CH2OH b. OH OH CH₂OH CO₂H HC CN CN CNarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





