Interpretation:
Whether a substance which does not conduct electricity in solid state can conduct electricity in dissolved form or not needs to be explained.
Concept introduction:
Metals are considered to be good conductors of electricity. Nonmetals are poor conductors of electricity. Metals are not soluble in water in pure form.
Answer to Problem 5E
If a solid substance does not conduct electricity, it does not mean that it will not conduct electricity in the dissolved form. It may conduct electricity when dissolved in water. Such substances are called ionic compounds. Ionic compounds do not conduct electricity in solid dry state. Example: sodium chloride, copper sulfate.
Explanation of Solution
A solid substance that conducts electricity must contain metal element. Metals conduct electricity because metals have mobile electrons that are free to move. Some substances may consist of only a metal or it may contain a nonmetal element as well. If it contains a metal and a nonmetal component, it is called an ionic compound. It will conduct electricity only when dissolved in water. Dry ionic solids will not conduct electricity.
Ionic compounds conduct electricity only when they are dissolved in water as the ions are free to move in the solution. In dry state they do not conduct electricity as ions are held together in fixed positions and cannot freely move.
Metals are conductors of electricity. They may conduct electricity either in solid state as pure metal substances or in dissolved form as ionic compounds.
Chapter U1 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Chemistry: The Central Science (14th Edition)
Organic Chemistry (8th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Anatomy & Physiology (6th Edition)
Introductory Chemistry (6th Edition)
College Physics: A Strategic Approach (3rd Edition)
- After an induced absorption process of an intensity, there are (without population inversion) transitions between:a) vibrational and rotational levels in the infrared region, we obtainb) vibrational levels exclusively in the infrared regionc) vibrational and rotational levels in the microwave regiond) transitions between nuclear spin levels in the radio frequency regionarrow_forwardIn a spontaneous emission process:a) the ground state population decreasesb) the excited state population decreasesc) the non-radiative component is predominantd) the emitted radiation is coherentarrow_forwardFor a molecule there are 3 energy levels A, B and C, where B is an intermediate energy level between A and C. The A → C transition occurs at 480 nm and the B → C transition occurs at 885 nm. Indicate the wavelength at which the A → B transition will occur.arrow_forward
- For a molecule there are three energy levels: A, B and C. If the transition A → B occurs at 1049 nm and the transition B → C occurs at 885 nm, we can say that the wavelength of the transition A → C will occur at approximately:a) 164 nm b) 1934 nm c) 480 nm d) 967 nmarrow_forward: Naming the Alkanes a) Write the IUPAC nomenclature of the compound below b) Draw 4-isopropyl-2,4,5-trimethylheptane, identify the primary, secondary, tertiary, and quaternary carbons. c) Rank pentane, neopentane and isopentane for boiling point. pentane: H3C-CH2-CH2-CH2-CH3 neopentane: CH3 H3C-C-CH3 isopentane: CH3 CH3 H3C-CH2-CH-CH3arrow_forwardAn essential part of the experimental design process is to select appropriate dependent and independent variables. True Falsearrow_forward
- 10.00 g of Compound X with molecular formula C₂Hg are burned in a constant-pressure calorimeter containing 40.00 kg of water at 25 °C. The temperature of the water is observed to rise by 2.604 °C. (You may assume all the heat released by the reaction is absorbed by the water, and none by the calorimeter itself.) Calculate the standard heat of formation of Compound X at 25 °C. Be sure your answer has a unit symbol, if necessary, and round it to the correct number of significant digits.arrow_forwardneed help not sure what am doing wrong step by step please answer is 971A During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration. What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forwardInfluence of salt concentrations on electrostatic interactions 2 Answer is 2.17A why not sure step by step please What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forward
- The name of the following molecule is: Νarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY