![Living By Chemistry: First Edition Textbook](https://www.bartleby.com/isbn_cover_images/9781559539418/9781559539418_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
Density of a marble must be found out which has mass and volume 18.5 g and 6.45 cm3 respectively.
Concept introduction:
Density of a substance is the ratio of mass to the volume.
Thus,
Here, m is mass and V is volume.
![Check Mark](/static/check-mark.png)
Answer to Problem 7E
Density of the marble is 2.87 g/cm3
Explanation of Solution
Mass of the marble is give as 18.5 g. Volume is given as 6.45 cm3.
The density can be calculated as follows:
Putting the values,
(b)
Interpretation:
Mass and volume of six marbles must be found out where each marble has mass and volume of 18.5 g and 6.45 cm3 respectively.
Concept introduction:
Mass and volume are additive in nature.
![Check Mark](/static/check-mark.png)
Answer to Problem 7E
Mass of six marbles is 111g and volume of six marbles is 38.7 cm3.
Explanation of Solution
One marble has mass of 18.5 g.
So, six marbles will have mass of
Similarly, volume of six marbles
(c)
Interpretation:
The density of one marble needs to be compared with density of six marbles.
Concept introduction:
Density is same for all similar objects. It is not an additive property.
![Check Mark](/static/check-mark.png)
Answer to Problem 7E
Density of one marble is same to the density of six marbles.
Explanation of Solution
Density is not an additive property. Thus, density will not change when number of marble is changed from one to six. So, all the similar marbles will have same density, that is, 2.87 g/cm3.
Chapter U1 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Microbiology: An Introduction
Biology: Life on Earth with Physiology (11th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
College Physics: A Strategic Approach (3rd Edition)
Human Physiology: An Integrated Approach (8th Edition)
- Comparison of experimental data to “known” value. Monna and co-workers used radioactive isotopes to date sediments from lakes and estuaries.21 To verify this method they analyzed a 208Po standard known to have an activity of 77.5 decays/min, obtaining the following results. 77.09, 75.37, 72.42, 76.84, 77.84, 76.69, 78.03, 74.96, 77.54, 76.09, 81.12, 75.75 Do the results differ from the expected results at the 95% confidence interval?arrow_forwardExplain the difference between the propagated uncertainty and the standard deviation. Which number would you use to describe the uncertainty in the measurement? if the standard deviation is 0.01 and the propagated uncertainty is 0.03arrow_forwardPropagation of uncertainty. Find the absolute and percent relative uncertainty assuming the ±-values are random error. 7.65±0.04 + 5.28±0.02 – 1.12±0.01 85.6±0.9 × 50.2±0.7 ÷ 13.8±0.5 [4.88±0.07 + 3.22±0.05] / 1.53±0.02arrow_forward
- Explain the difference between the propagated uncertainty and the standard deviation. Which number would you use to describe the uncertainty in the measurement?arrow_forwardCircle the compound in each pair where the indicated bond vibrates at higher frequency. WHY IS THIS? Provide thorough explanation to tie topic.arrow_forwardHow can you distinguish between each pair of compounds below using IR? Cite a bond and frequency that can be used to distinguish. Provide thorough steps and explanation.arrow_forward
- Propagation of uncertainty. Find the absolute and percent relative uncertainty assuming the ±-values are random error. 65±0.04 + 5.28±0.02 – 1.12±0.01 6±0.9 × 50.2±0.7 ÷ 13.8±0.5 [4.88±0.07 + 3.22±0.05] / 1.53±0.02arrow_forwardMatch to correct spectrum and explain the bonds and frequencies used to tell what spectrum connected to the given option. Thanks.arrow_forwardDraw the virtual orbitals for the planar and pyramidal forms of CH3 and for the linear and bent forms of CH2arrow_forward
- Q2: Draw the molecules based on the provided nomenclatures below: (2R,3S)-2-chloro-3-methylpentane: (2S, 2R)-2-hydroxyl-3,6-dimethylheptane:arrow_forwardQ3: Describes the relationship (identical, constitutional isomers, enantiomers or diastereomers) of each pair of compounds below. ག H CH3 OH OH CH3 H3C OH OH OH ////////// C CH3 CH3 CH3 CH3 H3C CH 3 C/III..... Physics & Astronomy www.physics.northweste COOH H нош..... H 2 OH HO CH3 HOOC H CH3 CH3 CH3 Br. H H Br and H H H Harrow_forwardQ1: For each molecule, assign each stereocenter as R or S. Circle the meso compounds. Label each compound as chiral or achiral. OH HO CI Br H CI CI Br CI CI Xf x f g Br D OH Br Br H₂N R. IN Ill I -N S OMe D II H CO₂H 1/111 DuckDuckGarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)