Solutions for MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Problem 8.8EP:
A transformercoupled emitterfollower amplifier is shown in Figure 8.30(a). The parameters are:...Problem 8.8TYU:
Consider the classAB output stage shown in Figure 8.37. The transistor parameters are n=100 and...Problem 8.9TYU:
From Figure 8.36, show that the overall current gain of the threetransistor configuration composed...Problem 2RQ:
Describe the safe operating area for a transistor.Problem 4RQ:
Discuss the role of thermal resistance between various junctions in a highpower transistor...Problem 9RQ:
Discuss crossover distortion.Problem 10RQ:
What is meant by harmonic distortion?Problem 11RQ:
Describe the operation of a classAB output stage and why a classAB output stage is important.Problem 16RQ:
Sketch a twotransistor configuration using npn and pnp BJTs that are equivalent to a single pnp BJT.Problem 8.7P:
A particular transistor is rated for a maximum power dissipation of 60W if the case temperature is...Problem 8.9P:
For a power MOSFET, devcase=1.5C/W , snkamb=2.8C/W , and casesnk=0.6C/W . The ambient temperature is...Problem 8.11P:
The quiescent collector current in a BiT is ICQ=3A . The maximum allowed junction temperature is...Problem 8.17P:
Consider the classA sourcefollower circuit shown in Figure P8.17. The transistors are matched with...Problem 8.22P:
Consider an idealized classB output stage shown in Figure P8.22. (The effective turnon voltages of...Problem 8.23P:
Consider an idealized classB output stage shown in Figure P822. (See Problem 8.22 for definitions of...Problem 8.25P:
For the classB output stage shown in Figure P8.24, the bias voltages are V+=12V and V=12V . The load...Problem 8.28P:
Consider the classAB output stage in Figure P8.28. The diodes and transistors arc matched, with...Problem 8.33P:
Consider the transformercoupled commonemitter circuit shown in Figure P8.33 with parameters VCC=12V...Problem 8.34P:
The parameters for the transformercoupled commonemitter circuit in Figure P8.33 are VCC=36V and...Problem 8.35P:
A BJT emitter follower is coupled to a load with an ideal transformer, as shown in Figure P8.35. The...Problem D8.36P:
Consider the transformercoupled emitter follower in Figure P8.36. Assume an ideal transformer. The...Problem D8.37P:
A classA transformer-coupled emitter follower must deliver 2W to an 8 speaker. Let VCC=18V , =100 ,...Problem D8.38P:
Repeat Problem 8.36 if the primary side of the transformer has a resistance of 100 .Problem 8.39P:
Consider the circuit in Figure 8.31. The circuit parameters are IBiass=1mA , RL=100 , V+=10V , and...Problem 8.41P:
The value of IBiass in the circuit shown in Figure 8.31 is 0.5mA. Assume diode and transistor...Problem 8.42P:
The transistors in the output stage in Figure 8.34 are all matched. Their parameters are =60 and...Problem 8.43P:
Consider the circuit in Figure 8.34. The supply voltages are V+=10V and V=10V , and the R3 and R4...Problem 8.46P:
Consider the classAB MOSFET output stage shown in Figure P8.46. The circuit meters are IBiass=0.2mA...Browse All Chapters of This Textbook
Chapter 1 - Semiconductor Materials And DiodesChapter 2 - Diode CircuitsChapter 3 - The Fields-effect TransistorChapter 4 - Basic Fet AmplifiersChapter 5 - Thebipolar Junction TransistorChapter 6 - Basic Bjt AmplifiersChapter 7 - Frequency ResponseChapter 8 - Output Stages And Power AmplifiersChapter 9 - Ideal Operational Amplifiers And Op-amp CircuitsChapter 10 - Integrated Circuit Biasinh And Active Loads
Chapter 11 - Differential And Multisatge AmplifiersChapter 12 - Feedback And StabilityChapter 13 - Operational Amplifier CircuitsChapter 14 - Nonideal Effects In Operational Amplifier CircuitsChapter 15 - Applications And Design Of Integrated CircuitsChapter 16 - Mosfet Digital CircuitsChapter 17 - Bipolar Digital Circuits
Sample Solutions for this Textbook
We offer sample solutions for MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL) homework problems. See examples below:
Chapter 1, Problem 1.1EPChapter 1, Problem 1.2EPChapter 1, Problem 1.1TYUChapter 1, Problem 1.7TYUChapter 1, Problem 1.3PChapter 1, Problem 1.17PChapter 1, Problem 1.27PChapter 1, Problem 1.30PChapter 1, Problem 1.35P
Given: The value of current is, IS1=IS2=10−13 A IS1=5×10−14 A, IS2=5×10−13A The given circuit is...Chapter 1, Problem 1.47PChapter 1, Problem 1.48PChapter 2, Problem 2.1EPChapter 2, Problem 2.1TYUChapter 2, Problem 2.3PChapter 2, Problem 2.24PChapter 2, Problem D2.25PChapter 2, Problem 2.45PChapter 2, Problem 2.47PChapter 2, Problem 2.51PChapter 2, Problem 2.52PChapter 2, Problem 2.57PChapter 2, Problem 2.59PChapter 2, Problem 2.62PChapter 3, Problem 3.1EPChapter 3, Problem 3.2TYUChapter 3, Problem 3.5EPChapter 3, Problem 3.8EPChapter 3, Problem 3.1PChapter 3, Problem 3.4PChapter 3, Problem 3.3CAEChapter 3, Problem 3.4CAEChapter 3, Problem 3.17PChapter 3, Problem 3.27PChapter 3, Problem 3.29PGiven Information: The given values are: VTN=1.4 V, Kn=0.25 mA/V2, IDQ=0.5 mA, VD=1 V The given...Given Information: The given circuit is shown below. VTN=0.4 V, kn'=120 μAV2( W L)1=( W L)2=30...Given Information: The given values are: VTN=0.6 V, kn'=120 μA/V2, IDQ=0.8 mA, V1=2.5 V, V2=6 V The...Given information: The given values are IDQ=0.8mAVTN=0.6Vkn'=100μA/V2=0.1mA/V2gm=1.8mA/V...Chapter 4, Problem 4.2EPChapter 4, Problem 4.3EPChapter 4, Problem 4.4EPChapter 4, Problem 4.8EPChapter 4, Problem 4.9EPChapter 4, Problem 4.12TYUChapter 4, Problem 4.40PChapter 4, Problem 4.66PChapter 4, Problem 4.67PChapter 4, Problem 4.70PChapter 4, Problem 4.71PChapter 4, Problem 4.78PChapter 5, Problem 5.1EPChapter 5, Problem 5.9EPChapter 5, Problem D5.31PChapter 5, Problem 5.32PChapter 5, Problem 5.42PChapter 5, Problem 5.52PGiven: The circuit is given as: Assume β=100 . Redrawing the given circuit by replacing voltage...Chapter 5, Problem 5.57PChapter 5, Problem 5.58PChapter 5, Problem D5.59PChapter 5, Problem D5.62PChapter 5, Problem 5.79PChapter 5, Problem 5.82PChapter 5, Problem D5.89DPChapter 5, Problem D5.91DPChapter 6, Problem 6.1EPGiven: Given circuit: Given Data: β=120VA=∞VBE(on)=0.7V Calculation: Considering the BJT (Bipolar...Given Information: The circuit diagram is shown below. β=120, VBE(on)=0.7 V, VA=∞VCC=VEE=3.3 V,...Chapter 6, Problem 6.16TYUChapter 6, Problem 6.19PChapter 6, Problem 6.26PChapter 6, Problem 6.45PChapter 6, Problem 6.51PChapter 6, Problem 6.52PChapter 6, Problem 6.54PChapter 6, Problem 6.83PChapter 7, Problem 7.1EPChapter 7, Problem 7.10EPChapter 7, Problem 7.21PChapter 7, Problem 7.23PChapter 7, Problem 7.32PChapter 7, Problem 7.40PChapter 7, Problem 7.41PChapter 7, Problem 7.49PChapter 7, Problem 7.50PChapter 7, Problem 7.69PChapter 7, Problem 7.70PCalculation: The expression for the collector to the emitter load line is given by, VCE=VCC−ICRC The...Calculation: The given diagram is shown in Figure 1 The conversion from 1 mA into A is given by, 1...Calculation: The sketch for the safe operating area of the transistor is shown below. The required...Calculation: The given diagram is shown in Figure 1 The expression for the maximum value of the...Calculation: The given diagram is shown in Figure 1 The conversion from 1 mA into A is given by, 1...Calculation: The given diagram is shown in Figure 1 The diagram for the class AB output stage using...Calculation: The given diagram is shown in Figure 1. The expression for the value of base current of...Chapter 8, Problem 8.48PChapter 8, Problem 8.49PChapter 9, Problem 9.1EPChapter 9, Problem 9.9EPChapter 9, Problem 9.6PChapter 9, Problem 9.13PChapter 9, Problem 9.14PChapter 9, Problem D9.18PChapter 9, Problem 9.51PChapter 9, Problem 9.62PChapter 9, Problem 9.63PChapter 9, Problem 9.65PChapter 9, Problem 9.67PChapter 9, Problem 9.72PChapter 9, Problem 9.81PChapter 10, Problem 10.1EPChapter 10, Problem 10.6TYUGiven: The circuit parameters are V+=+5VV−=0 The transistor parameters are...Chapter 10, Problem 10.56PGiven: VTN=0.4VVTP=−0.4VK'n=100μA/V2K'p=60μA/V2λn=λp=0 (W/L) 1 = (W/L) 2 =20 (W/L) 3 =5 (W/L) 4 =10...Chapter 10, Problem 10.63PGiven: VTN=0.5VVTP=−0.5V(1/2)μnCox=50μA/V2(1/2)μpCox=20μA/V2λn=λp=0 (W/L) 1 = (W/L) 3 = (W/L) 4 =5/1...Chapter 10, Problem 10.68PGiven: VTN=0.8VVTP=−0.8VK'n=100μA/V2K'P=60μA/V2λn=λp=0R=100kΩ Calculation: The given circuit is,...Chapter 10, Problem 10.76PGiven: R1=47kΩVAN=120VVAP=90VV+=3VVEB(on)=0.6V Calculation: The given circuit is, The transistor Q1...Chapter 10, Problem 10.83PChapter 10, Problem 10.89PChapter 10, Problem D10.90PChapter 11, Problem 11.1EPGiven: The given circuit is, V+=+5V ,V−=−5V,RD=1kΩ ,RS=2kΩ,VTP=−0.6V,Kp=1.2mA/V2,λ=0 v1=v2=0...Given: The given circuit is, V+=+5V ,V−=−5V,RD=25kΩ...Given: The given circuit is shown in Figure 1 Figure 1 Calculation: The expression for the current...Chapter 11, Problem 11.62PChapter 11, Problem 11.68PGiven: The given diagram is shown in Figure 1 Figure 1 Calculation: The expression for the input...Given: The given circuit is shown in Figure 1 Figure 1 Calculation: The expression for the input...Given: The given diagram is shown in Figure 1 Figure 1 Calculation: The expression to determine the...Chapter 11, Problem 11.82PGiven: The given circuit is, IQ=25μA,β=100 VA=50V,VTN=0.8V,Kn=0.25mA/V2,λ=0.02V−1 The two amplifying...Given: The circuit is given as: The circuit parameters:...Chapter 11, Problem 11.90PGiven: The given circuit is, β=200,VBE(on)=0.7V,VA=80V Calculation: Consider the given figure,...Chapter 11, Problem 11.93PChapter 11, Problem D11.105DPChapter 12, Problem 12.1EPGiven: The given diagram is shown in Figure 1 Figure 1 Calculation: Mark the nodes and redraw the...Given: The given diagram is shown in Figure 1 Figure 1 Feedback resistor value is varied between 5...Chapter 12, Problem 12.11TYUGiven: The give circuit is shown in Figure 1 Calculation: The value of the collector current of the...Chapter 12, Problem 12.37PChapter 12, Problem 12.38PGiven: The given values are: V+=5 VVGG=2.5 VRD1=5 kΩRE2=1.6 kΩRL=1.2 kΩKn=1.5(mAV2)VTN=0.5...Given: The given circuit is shown in Figure 1. Calculation: The Thevenin resistance of the above...Given: The given diagram is shown in Figure 1 Calculation: The expression to determine the value of...Chapter 12, Problem 12.49PChapter 12, Problem 12.50PChapter 12, Problem 12.53PGiven: The given circuit is shown in Figure 1 Figure 1 Calculation: The small signal equivalent...Chapter 12, Problem 12.77PChapter 12, Problem 12.80PGiven: The bias circuit and input stage portion of 741 op-amp circuit is shown below. Figure 1...Given: Following is given circuit of the MC14573 op-amp equivalent circuit Given data, The...Given: The circuit diagram of the BJT op-amp is Given that The transistor parameters are, β(npn)=120...Given: Circuit is given as; V+=3 V,V−=−3 V,R1=80 kΩ,RE=3.5 kΩ Current for transistors Q1,Q2 and Q3...Given: Consider the 741 op-amp having bias voltage ±5 V Calculation: The reference current is....Given: Consider the 741 op-amp having bias voltage ±5 V Calculation: The early voltage given as...Given: Consider the 741 op-amp having bias voltage ±5 V Calculation: The resistance at Q14 can be...Chapter 14, Problem 14.1TYUGiven: Given bipolar active load diff-amp is, Given parameters are: V+=5V V−=−5V The transistor...Chapter 14, Problem 14.38PGiven: Bipolar diff-amp with active load and a pair of offset-null terminal is shown below. Given...Given: The given circuit is: IB1=IB2=1 μA and vI=0 As vI=0 , the modified circuit is; For first...Given: The given circuit is: Input bias current IB=0.8 μA Input offset current IOS=0.2 μA R1=R2=50...Given: The given circuit is shown below. Input offset voltage is VOS=3 mV Average input bias current...Given: The given circuit is shown below. Input offset voltage V0S=2 mV at T=25°C Average input bias...Chapter 14, Problem 14.60PGiven: The given difference amplifier circuit is, Tolerance of each resistor is ±x% . Minimum CMRRdB...Chapter 15, Problem 15.1EPGiven: Circuit diagram for voltage regulator is shown below. The voltage of Zener diode Vz=5.6 V...Given: Calculation: Redraw the given circuit in s -domain as From the circuit,...Given: The circuit is given as: The circuit is redrawn by labeling the voltages as shown below:...Given: Consider the circuit shown below. Calculation: The non-inverting terminal of op-amp is...Given: The circuit is given for the phase shift oscillator: Redrawing the given circuit Nodal...Given: The circuit for the Hartley oscillator is given as: Transconductance, gm=30mA/VForward biased...Given: The circuit is given as: For the ideal operation amplifier, the inverting and non-inverting...Chapter 15, Problem 15.46PChapter 15, Problem 15.47PChapter 15, Problem 15.49PGiven: The circuit is given as: For the ideal operational amplifier, the currents in the inverting...Given: Given LM380 power amplifier circuit as V+=22Vβn=100βp=20 Calculation: Assuming matched input...Chapter 16, Problem 16.1EPGiven: Power supply voltage, VDD=3V Intrinsic trans conductance parameter, kn'=100×10−6A/V2 Device...Chapter 16, Problem 16.9EPGiven: The given circuit is shown below. The parameters are: VDD=3.3 VKn=50 μA/V2RD=100 kΩvI=3.3...Calculation: The given diagram is shown in Figure 1. The expression for the voltage VOH is given by,...Calculation: The given diagram is shown in Figure 1 The expression to determine the power dissipated...Calculation: The given diagram is shown in Figure 1 The expression to determine the...Calculation: The given diagram is shown in Figure 1 The expression to determine the...Calculation: The given diagram is shown in Figure 1. Consider the case when the input voltage is...Calculation: The expression to determine the value of the KN is given by, KN=k′n2(WL)n Substitute 80...Calculation: The expression to determine the value of the KN is given by, KN=k′n2(WL)n Substitute...Calculation: Consider the case when the input voltage is, vI=VDD The expression for the conduction...Calculation: The expression to determine the value of the KN is given by, KN=k′n2(WL)n Substitute...Calculation: The given diagram is shown in Figure 1 The given table is shown in Table 1 Table 1...Given: The given diagram is shown in Figure 1. Calculation: The expression to determine the...Calculation: The given diagram is shown in Figure 1 The expression to determine the analog output...Chapter 17, Problem 17.1EPCalculation: The given diagram is shown in Figure 1 The redesign circuit is shown below. The...Chapter 17, Problem 17.9EPCalculation: The given diagram is shown in Figure 1 Apply KVL in the above circuit. 5 V=iC(2.25...Calculation: The given diagram is shown in Figure 1 The expression to determine the value of the...Calculation: The given diagram is shown in Figure 1 Mark the currents and redraw the circuit. The...Calculation: The given diagram is shown in Figure 1. The expression for the current i1 is given by,...Calculation: The given diagram is shown in Figure 1 The expression for the voltage vB1 is given by,...
More Editions of This Book
Corresponding editions of this textbook are also available below:
Microelectronics: Circuit Analysis And Design
3rd Edition
ISBN: 9780071254434
Microelectronics Circuit Analysis and Design
4th Edition
ISBN: 9780071289474
MICROELECTRONICS CIRCUIT PACKAGE
4th Edition
ISBN: 9780078007972
Microelectronics Circuit Analysis and Design
4th Edition
ISBN: 9780077387815
Microelectronics: Circuit Analysis and Design
4th Edition
ISBN: 9780073380643
Related Electrical Engineering Textbooks with Solutions
Still sussing out bartleby
Check out a sample textbook solution.