Concept explainers
Consider the circuit in Figure 6.70(a). Let
a.
The value of the Q-point for each transistor.
Answer to Problem 6.16TYU
The Q-point are given as:
Explanation of Solution
Given:
The transistor circuit is provided:
Where,
Consider the emitter current of Q2 transistor is same as the quiescent emitter current of transistor 2.
The expression for quiescent collector current (
Here ,
Substitute 1mA for
The expression for quiescent emitter current
Substituting 1 mA for
Now, the expression for quiescent collector current
Substituting 100 for
Write the expression for base voltage
Here ,
Substitute
Considering the expression for emitter voltage
Substituting 0V For
Considering the expression for emitter voltage
Substituting 0V FOR
The expression for current
Substitute
The expression for output voltage
Substituting 5V for
The expression for collector emitter quiescent voltage
Substituting 1V for
The expression for collector emitter quiescent voltage
Substituting 1V for
Therefore, the Q -point of transistor 1:
The Q -point of transistor 2:
.
b.
The small signal hybrid-
Answer to Problem 6.16TYU
The results are:
Explanation of Solution
Given:
The transistor circuit is provided:
Where,
Now, the expression for small signal hybrid
Substituting the 100 for
The expression for transconductance
Substituting 0.026V for
Consider the values or output resistance
The expression for small signal hybrid
Substituting 100 for
The expression for transconductance
Substituting 0.026V for
Thus the small signal parameter values are
c.
The small-signal voltage gain.
Answer to Problem 6.16TYU
The results are:
Explanation of Solution
Given:
The transistor circuit is provided:
Where,
The expression for output voltage
The expression for source voltage
Considering the expression for hybrid
Re-arranging the equation (3).
Considering the expression for current gain of transistor (
Substituting the equation (5) in (4)
Substituting the equation (6) in (1)
Substituting the equation (6) in (2):
The expression for voltage gain
Substituting the equation (7) and (8) in (9):
Substituting 0.377mA for
Thus , the voltage gain is -77.01
d.
The input resistance Ri .
Answer to Problem 6.16TYU
The input resistance are:
Explanation of Solution
Given:
The transistor circuit is provided:
Where,
The expression for input resistance
Substituting the 100 for
Therefore, the input resistance value is
Want to see more full solutions like this?
Chapter 6 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
- Don't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answerarrow_forwardThe former expert solved the question, but I didn't understand how he simplified the fractions. A communication satellite is in stationary (synchronous) orbit about the carch (assume altitude of 22.300 statute miles). Its transmitter generates 8.0 W. Assume the transmit- ting antenna is isotropic. Its signal is received by the 210-ft diameter tracking parabo- loidal antenna on the earth at the NASA tracking station at Goldstone, California. Also assume no resistive loss in either antenna, perfect polarization match, and perfect impedance match at both antennas. At a frequency of 2 GHz, determine the: (a) power density (in watts/m²) incident on the receiving antenna. (b) power received by the ground-based antenna whose gain is 60 dB.arrow_forward
- Don't use ai to answer I will report you answerarrow_forwardA communication satellite is in stationary (synchronous) orbit about the earch (assume altitude of 22.300 statute miles). Its transmitter generates 8.0 W. Assume the transmit- ting antenna is isotropic. Its signal is received by the 210-ft diameter tracking parabo- loidal antenna on the earth at the NASA tracking station at Goldstone, California. Also assume no resistive loss in either antenna, perfect polarization match, and perfect impedance match at both antennas. At a frequency of 2 GHz. determine the: (a) power density (in watts/m²) incident on the receiving antenna. (b) power received by the ground-based antenna whose gain is 60 dB.arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- A plane wave traveling in z-direction through a medium with &=8, μ-2 and has the electric and magnetic field intensity at z=0 shown in Fig. 6.1 and Fig. 6.2, respectively. Utilize the provided information to find the following: (a) w (b) The intrinsic impedance of the medium © B (d) a (e) The expression of the magnetic field intensity, H (f) The time-average power carried by the wave Magnetic Field Intensity (mA/m) Electric Field Intensity (V/m) 0.5 0.4- 0.3 0.2 ཧཱུྃ༔ཤྲུསྦྱ ཌུ ཋ ; སྟྲི " ° ཝཱ 0.1 -0.5 Ex -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Fig 6.2 Hy 2.0 Time (ns)². -2.0 -1.5 -1.0 -0.5 0.0; 0.5 1.0 Time (ns) 2.0 0.083 ns or 0.0415 Tarrow_forwardDon't use ai to answer I will report you answerarrow_forwardPlease help mearrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,