(a)
The small signal differential-mode voltage gain.
(a)
Answer to Problem 13.5P
The overall small signal differential voltage gain
Explanation of Solution
Given:
The circuit diagram of the BJT op-amp is
Given that
The transistor parameters are,
And base-emitter turn-on voltage is
Calculation:
The differential mode voltage gain can be defined as
Where
From the figure the quiescent collector currents in
Hence,
The collector current for
Therefore, the collector current for
The transconductance can be calculated as
Therefore, the transconductance for
The resistance
Therefore, the resistance
The resistance
Therefore, the resistance
The resistance
Therefore, the resistance
The resistance
Therefore, the resistance
Substitute
Hence,
Substitute
Therefore, the differential mode voltage gain
The small signal voltage gain is
Now,
Therefore,
Where the resistance
Hence,
Equation(2) becomes
Therefore, the small signal voltage gain is
Now the overall small signal differential voltage gain is
Therefore, the overall small signal differential voltage gain
(b)
The differential-mode input resistance.
(b)
Answer to Problem 13.5P
The differential-mode input resistance is
Explanation of Solution
Given:
The circuit diagram of the BJT op-amp is
Given that
The transistor parameters are,
And base-emitter turn-on voltage is
Calculation:
The differential-mode input resistance is given as
Where
Hence,
Now, the differential-mode input resistance is
Therefore, the differential-mode input resistance is
(c)
Theunity-gain bandwidth.
(c)
Answer to Problem 13.5P
The gain bandwidth product is
Explanation of Solution
Given:
The circuit diagram of the BJT op-amp is
Given that
The transistor parameters are,
And base-emitter turn-on voltage is
Calculation:
The unity-gain bandwidth product is
Here, the dominant pole frequency is given as
Hence,
And
Hence,
Now the dominant pole frequency we obtain as
Therefore, the dominant pole frequency
The unity-gain bandwidth product is
Therefore, the gain bandwidth product is
Want to see more full solutions like this?
Chapter 13 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
- Please solve in detailarrow_forward6.7 The transmitting aerial shown in Fig. Q.3 is supplied with current at 80 A peak and at frequency 666.66 kHz. Calculate (a) the effective height of the aerial, and (b) the electric field strength produced at ground level 40 km away. 60 m Fig. Q.3 Input 48 m Eartharrow_forwardox SIM 12.11 Consider the class B output stage, using MOSFETs, shown in Fig. P12.11. Let the devices have |V|= 0.5 V and μC WIL = 2 mA/V². With a 10-kHz sine-wave input of 5-V peak and a high value of load resistance, what peak output would you expect? What fraction of the sine-wave period does the crossover interval represent? For what value of load resistor is the peak output voltage reduced to half the input? Figure P12.11 +5 V Q1 Q2 -5Varrow_forward
- 4 H ་་་་་་་ 四一周 A H₂ Find out put c I writ R as a function G, H, Harrow_forward4 H A H₂ 四一周 Find out put c I writ R as a function G, H, Harrow_forward8. (a) In a Round-Robin tournament, the Tigers beat the Blue Jays, the Tigers beat the Cardinals, the Tigers beat the Orioles, the Blue Jays beat the Cardinals, the Blue Jays beat the Orioles and the Cardinals beat the Orioles. Model this outcome with a directed graph. https://www.akubihar.com (b) (c) ✓ - Let G = (V, E) be a simple graph. Let R be the relation on V consisting of pairs of vertices (u, v) such that there is a path from u to vor such that u= v. Show that R is an equivalence relation. 3 3 Determine whether the following given pair of directed graphs, shown in Fig. 1 and Fig. 2, are isomorphic or not. Exhibit an isomorphism or provide a rigorous argument that none exists. 4+4=8 Աշ աշ ИНИЯ Fig. 1 Fig. 2 Querarrow_forward
- EXAMPLE 4.5 Objective: Determine ID, circuit. V SG' SD Vs and the small - signal voltage gain of a PMOS transistor Consider the circuit shown in Figure 4.20(a). The transistor parameters are A K = 0.80m- V Р _2’TP = 0.5V, and λ = 0 Varrow_forwardNeed a solution and don't use chatgptarrow_forwardNeed a solarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,