MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 13.2P
(a)
To determine
The design parameters in the circuit for the following given values.
(b)
To determine
The values of the following small signal voltage gain for the given circuit.
(c)
To determine
The values of the overall small signal voltage gain
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
3. Describe the function of PLL circuit.
4. Describe the function of bandpass filter.
ASK Modulator/Demodulator
U1
VD Signal in
VT out
X1
W
R1
VC Carrier in
w
x2
100K
3
Y1
4
Y2 AD633 Z
VR1
10K
VR1
Multiplier(1)
I
U2
Vx out
X1
W
R3
2
w
x2
In2
100K
3
۲۱
I
Y2 AD633
Z
VR2
R2
10K
C4
100K
VR2
Multiplier(2)
+5V
200p
R5
R6
R101K
ww w
2.7K
22K
1N4148
D1
559
VE out
D+
In(ac)
6 0H
200p
HH
6
VLP out
Vo out
U3
VR
0.01
0.1u
R8
VR3
ww
50K
Envelope Detector
10K
U3
LF356
VR3
LPF
U4Σ
LM311
Comparator
U5
PLL in CS
HH
14 SIGN IN
0.1u
6 CIA
PC1OUT 2
PULSES
PHASE(2)
COMPARATOR OUT 13.
C10
HT
150p R16
ww
R12
VSO
C6
200p
VCO OUT 4
IK
in
R14
C9
18K
10 O
w
7 Cle
H
VLO out
6
15K
VCO
150p
06
11 R1
CD4046
VCO IN 9
VR5
1K
12 R2
0.0047u
C7
I
Demod
C8 out
10
SOURCE
FOLLOWER
R11
100K
INH
COMP IN
5
3
VR4
+5V+12V GND-12V
о
HTO
0.1u
R13
10K
I
PL
VR5
Figure 18-10 KL-94005 module
R15
U6Σ
OP37
BPF
DUC
1. Is the waveform on VT out terminal an ASK modulated signal?
TS
PROD
2. Is the waveform on VT out terminal an OOK modulated signal?
ASK Modulator/Demodulator
U1
VD Signal in
VT out
X1
W
R1
VC Carrier in
w
x2
100K
3
Y1
4
Y2 AD633 Z
VR1
10K
VR1
Multiplier(1)
I
U2
Vx out
X1
W
R3
2
w
x2
In2
100K
3
۲۱
I
Y2 AD633
Z
VR2
R2
10K
C4
100K
VR2
Multiplier(2)
+5V
200p
R5
R6
R101K
ww w
2.7K
22K
1N4148
D1
559
VE out
D+
In(ac)
6 0H
200p
HH
6
VLP out
Vo out
U3
VR
0.01
0.1u
R8
VR3
ww
50K
Envelope Detector
10K
U3
LF356
VR3
LPF
U4Σ
LM311
Comparator
U5
PLL in CS
HH
14 SIGN IN
PC1OUT 2
0.1u
6 CIA
PULSES
PHASE(2)
COMPARATOR
OUT 13
C10
HT
150p R16
ww
R12
VSO
18K
C6
200p
VCO OUT 4
IK
in
R14
C9
10 O
w
H
VLO out
6
7 Cle
15K
VCO
150p
06
11 R1
CD4046
VCO IN 9
VR5
1K
12 R2
0.0047u
C7
I
Demod
C8 out
10
SOURCE
FOLLOWER
R11
100K
INH
COMP IN
5
3
VR4
+5V+12V GND-12V
о
HTO
0.1u
R13
10K
I
PL
Figure 18-10 KL-94005 module
VR5
R15
U6Σ
OP37
BPF
h
e
6. Discuss the relationship between Vx out and VLP out signals.
7. Describe the function of comparator.
ASK Modulator/Demodulator
U1
VD Signal in
VT out
X1
W
R1
VC Carrier in
w
x2
100K
3
Y1
4
Y2 AD633 Z
VR1
10K
VR1
Multiplier(1)
I
U2
Vx out
X1
W
R3
2
w
x2
In2
100K
3
۲۱
I
Y2 AD633
Z
VR2
R2
10K
C4
100K
VR2
Multiplier(2)
+5V
200p
R5
R6
R101K
ww w
2.7K
22K
1N4148
D1
559
VE out
D+
In(ac)
6 0H
200p
HH
6
VLP out
Vo out
U3
VR
0.01
0.1u
R8
VR3
ww
50K
Envelope Detector
10K
U3
LF356
VR3
LPF
U4Σ
LM311
Comparator
U5
PLL in CS
HH
14 SIGN IN
0.1u
6 CIA
PC1OUT 2
PULSES
PHASE(2)
COMPARATOR OUT 13.
C10
HT
150p R16
ww
R12
VSO
C6
200p
VCO OUT 4
IK
in
R14
C9
18K
10 O
w
7 Cle
H
VLO out
6
15K
VCO
150p
06
11 R1
CD4046
VCO IN 9
VR5
1K
12 R2
0.0047u
C7
I
Demod
C8 out
10
SOURCE
FOLLOWER
R11
100K
INH
COMP IN
5
3
VR4
+5V+12V GND-12V
о
HTO
0.1u
R13
10K
I
PL
VR5
Figure 18-10 KL-94005 module
R15
U6Σ
OP37
BPF
Chapter 13 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Ch. 13 - Prob. 13.1EPCh. 13 - Prob. 13.2EPCh. 13 - Prob. 13.4EPCh. 13 - Repeat Example 13.5 assuming Early voltages of...Ch. 13 - Prob. 13.6EPCh. 13 - Prob. 13.3TYUCh. 13 - Prob. 13.4TYUCh. 13 - Prob. 13.5TYUCh. 13 - Prob. 13.6TYUCh. 13 - Prob. 13.8EP
Ch. 13 - Prob. 13.11EPCh. 13 - Prob. 13.10TYUCh. 13 - Prob. 13.12TYUCh. 13 - Prob. 13.12EPCh. 13 - Prob. 13.13EPCh. 13 - Prob. 13.15EPCh. 13 - Prob. 13.15TYUCh. 13 - Consider the LF155 BiFET input stage in Figure...Ch. 13 - Describe the principal stages of a generalpurpose...Ch. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Describe the operation and characteristics of a...Ch. 13 - Describe the configuration and operation of the...Ch. 13 - What is the purpose of the resistorin the active...Ch. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Describe the frequency compensation technique in...Ch. 13 - Sketch and describe the general characteristics of...Ch. 13 - Prob. 11RQCh. 13 - Sketch and describe the principal advantage of a...Ch. 13 - Prob. 13RQCh. 13 - What are the principal factors limiting the...Ch. 13 - Consider the simple MOS opamp circuit shown in...Ch. 13 - Prob. 13.2PCh. 13 - Prob. 13.5PCh. 13 - Consider the input stage of the 741 opamp in...Ch. 13 - Prob. 13.7PCh. 13 - Prob. 13.8PCh. 13 - Prob. 13.10PCh. 13 - The minimum recommended supply voltages for the...Ch. 13 - Prob. 13.12PCh. 13 - Consider the 741 opamp in Figure 13.3, biased with...Ch. 13 - Prob. 13.14PCh. 13 - Consider the output stage of the 741 opamp shown...Ch. 13 - Prob. 13.16PCh. 13 - Prob. 13.19PCh. 13 - Prob. 13.20PCh. 13 - Prob. 13.21PCh. 13 - Prob. 13.22PCh. 13 - Prob. 13.23PCh. 13 - Prob. 13.24PCh. 13 - (a) Determine the differential input resistance of...Ch. 13 - An opamp that is internally compensated by Miller...Ch. 13 - The CMOS opamp in Figure 13.14 is biased at V+=5V...Ch. 13 - Prob. 13.34PCh. 13 - Consider the MC14573 opamp in Figure 13.14, with...Ch. 13 - Prob. 13.36PCh. 13 - Prob. 13.37PCh. 13 - Prob. 13.39PCh. 13 - Prob. 13.41PCh. 13 - In the bias portion of the CA1340 opamp in Figure...Ch. 13 - Prob. 13.57PCh. 13 - In the LF155 BiFET opamp in Figure 13.25, the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Choose one of the choices indicated in the parentheses such as the following sentences have correct messing What is the main purpose of a communication system? a) To transmit information from one point to another b) To amplify signals for better reception c) To filter out unwanted noise dy To generate carrier waves for modulation 2. What the purpose of the modulator in a communication system? a) To generate the cares wave for modulation b) To convert the information signal to a modulated signal c) To filter out unwanted noise d) To amplify the modulated signal for transmission Which component in an FM transmitter is responsible for generating the carrier signal? a) Mixer b) Modulator c) Demodulator d) Oscillator 4 For a FM signal v(t) 25 cos (15 deviation 10 (3456 4 24669, 7321 7.21284) 117 10 sm 15501). Maximum frequency 5. In an AM receiver, which component is responsible for separating the modulating signal from the received AM signal? a) Mixer b) Modulator c) Demodulator dy…arrow_forwardQ1. Choose the correct answer: 1. Increasing the amplitude of a square pulse (increases, decreases, maintains not related) the spectrum range in the frequency domain. 2. A continuous FT indicates a signal. (continuous, discrete, periodic non-periodic). the pulse duration is proportional to the amplitude of the signal. (PAM, PWM, PPM, 3. In ASK). . In VSB transmission (both sidebands are used, single sideband is used, single sideband and part of the other sideband, only the vestige of the carrier signal is used). 5. An economic FDM receiver design should contain simultaneous reception, selective reception). 6. In AMI code, the shapes of "1" and "0" are dependent, not related to each other). 7. In FDM the guard band is used to (pilot carrier zero crossing detector, (the same) opposite to each other, next bit increase the overlap between FDM signals, decrease the overlap between FDM signals, increase the baseband bandwidth, decrease the baseband bandwidth). 20 3. Higher number of levels…arrow_forwardIn a railway system with a power source of 600 VDC, I need to achieve a load output of 120 VDC for railway lights. I found a DC-DC converter capable of stepping down 600 VDC to 125 VDC. To obtain 120 VDC from this converter, we can use a voltage divider with the following equation: [R2/(R2+R1)]=120/125=0.96=0.96However, using resistors to achieve the desired output voltage raises some concerns. Is it advisable to use railway-grade resistors for this application? I found some resistors in the range of 1-10k ohms, but I am unsure how they should be connected in the circuit with the lights (the load to be used). I would greatly appreciate any suggestions or schematic diagrams to clarify the best approach for connecting the resistors in this setup.arrow_forward
- Find the valve of the voltage Vx using the THEVENIN equivalent circuit and redo the problem with the NORTON equivalent circuit. Show both the the vinen and Norton circuits. I 12V m 1 ww 3 23 + 43Vx 5 63 миarrow_forwardFind the valve of V using the Thevenin Equivalent Circuit and then determine if the 8 ohm resistor allows maximum power transfer. If not, then what value should the 8 ohm resistor be changed to for maximum power transfer? ZA 6 6 + 22V 83 V 34 2 6 АААА ААААarrow_forwardFind the valve of voltage Vx using the THE VIN IN equivalent circuit ww 8 Show the Theven in Circuit. I 7V ZV m 6 5 M + 4 34 АА 3 1 АААА 9A ↑ 24arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Differential Amplifiers Made Easy; Author: The AudioPhool;https://www.youtube.com/watch?v=Mcxpn2HMgtU;License: Standard Youtube License