(a)
The small signal parameters for each of the transistor and the value of the composite transconductance for the given specifications.
(a)
Answer to Problem 11.80P
The value of the small signal parameters are
Explanation of Solution
Given:
The given diagram is shown in Figure 1
Figure 1
Calculation:
The expression to determine the value of the emitter current of the second transistor is calculated as,
The expression to determine the value of the current
Substitute
The value of the transconductance
The expression to determine the value of the small signal resistance is given by,
Substitute
The value of the drain current
The value of the transconductance
Substitute
The expression to determine the value of the composite transconductance is given by,
Substitute
Conclusion:
Therefore, the value of the small signal parameters are
(b)
The small signal parameters for each of the transistor and the value of the composite transconductance for the given specifications.
(b)
Answer to Problem 11.80P
The value of the small signal parameters are
Explanation of Solution
Given:
The given diagram is shown in Figure 1
Figure 1
Calculation:
The expression to determine the value of the emitter current of the second transistor is calculated as,
The expression to determine the value of the current
Substitute
The value of the transconductance
The expression to determine the value of the small signal resistance is given by,
Substitute
The value of the drain current
The value of the transconductance
Substitute
The expression to determine the value of the composite transconductance is given by,
Substitute
Conclusion:
Therefore, the value of the small signal parameters are
Want to see more full solutions like this?
Chapter 11 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
- A left-sided signal x(t)=-e¯bt u(-t): 0 == X(s) -e-bu(t)e-st dt =- -Le-c 1 -(b+o+jw)t dt = = -00 -∞ (a + b) + jw 1 s+b For this integral to converge, it is necessary that b +σ <0; i.e., ROC: Re[s]=σ < −b. 2 How ?arrow_forwardA left-sided signal x(t)=-ebt u(-t): A right-sided signal x(t)=e¯at u(t) Find Laplace transform of x(t)=u(t)arrow_forwardFind Laplace transform of x(t) = −e¯btu(−t) + e¯atu(t) Find Laplace transform of x(t) = u(t)arrow_forward
- Expert only, don't use artificial intelligence ,or screenshot of an AI solving stepsarrow_forwardfind inverse LT for the following functions 1- [0.2s+1.4] s2+1.96. 2. L-1 5s+1 Ls2-25. 4s+32 3. L- L(s2-16).arrow_forwardQ Figurel shows the creation of the Frequency Reuse Pattern Using the Cluster Size K (A) illustrates how i and j can be used to locate a co-channel cell. Juster Cluster CB Cluster 2 X=7(i=2,j=1)arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,