MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 14, Problem 14.33P

(a)

To determine

The value of IS4 for the given CE voltage.

(a)

Expert Solution
Check Mark

Answer to Problem 14.33P

The value of current IS4 is IS4=5×1015A .

Explanation of Solution

Given:

Given bipolar active load diff-amp is,

  MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL), Chapter 14, Problem 14.33P , additional homework tip  1

Given parameters are:

  V+=5V

  V=5V

The transistor parameters are:

  VAN=120V

  VAP=80V

  vBE(npn)=vEB(pnp)=0.6V

  IS1=IS2

  Is3=5×1015A

  VEC4=0.6V

Calculation:

Let v1=v2

Since vEB3=0.6V=vBE1 , then for v1=v2

  vCE1=V+

  vCE1=5V(1)

Now

  vEC4+vCE2=V++vBE2

  vCE2=V++vBE2vEC4

  vCE2=5+0.6vEC4

  vCE2=5.6vEC4(2)

The collector currents, iC1=iC3

  iC1=IS1(evBE1VT)(1+vCE1VA1)(3)iC3=IS3(evEB3VT)(1+vEC3VA3).(4)

  Andic2=iC4

  iC2=IS2(evmaVr)(1+vCE2VA2)(5)

  iC4=IS4(evmtVT)(1+vEC4VA4)(6)

Assume that Q1 and Q2 are matched, then IS1=IS2IS and VA1=VA2VAN

Assume that Q3 and Q4 are slightly mismatched, so that IS3IS4 but still assume that

  VA3=VA4VAP. For v1=v2,

  vBB1=vBE2; also vEB3=vEB4=vEC3vEB

Taking ratio of equations (3), (5) produces,

  iC1iC2=IS1(evmVT)(1+vCE1VA1)IS2(evm2Vr)(1+vCE2VA2)iC1iC2=(1+vCB1VAN)(1+vCE2VAN).(7)

Taking ratio of equations (4). (6) produces,

  iC3iC4=IS3(evm2Vr)(1+vEC3VA3)IS4(eγEVT)(1+vEC4VA4)

  iC1iC2=IS3(1+vFBVAP)IS4(1+vEC4VAP)

  (ic1=ic3,ic2=ic4)(8)

From equations (7) and (8)

(1+vCF1VAN)(1+vCE2VAN)=IS3(1+vEBVAP)IS4(1+vEC4VAP)

  IS4=IS3(1+vEBVAP)(1+vCE2VAN)(1+vEC4VAP)(1+vCR1VAN)

  IS4=IS3(1+vEBVAP)(1+5.6vEC4VAN)(1+vEC4VAP)(1+vCR1VAN)

Substituting equations (1) and (2) in above equation,

  IS4=5×1015(1+0.680)(1+5.6vEC4120)(1+vEC480)(1+5120)

  IS4=5×1015(80+0.680)(120+5.6vEC4120)(80+vEC480)(120+5120)

  IS4=5×1015(80.6)(125.6vEC4)(80+vEC4)(125)

  IS4=3.224×1015(125.6vec4)(80+vEC4)(9)

Given vEC4=0.6V

Substituting this vEC4 value in equation (9),

  IS4=3.224×1015(125.60.6)(80+0.6)

  IS4=3.224×1015×12580.6

  IS4=5×1015A

(b)

To determine

The value of IS4 for the given CE voltage.

(b)

Expert Solution
Check Mark

Answer to Problem 14.33P

The value of current IS4 is IS4=4.939×1015A .

Explanation of Solution

Given:

Given bipolar active load diff-amp is,

  MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL), Chapter 14, Problem 14.33P , additional homework tip  2

Given parameters are:

  V+=5V

  V=5V

The transistor parameters are:

  VAN=120V

  VAP=80V

  vBE(npn)=vEB(pnp)=0.6V

  IS1=IS2

  Is3=5×1015A

  VEC4=1.2V

Calculation:

Let v1=v2

Since vEB3=0.6V=vBE1 , then for v1=v2

  vCE1=V+

  vCE1=5V(1)

Now

  vEC4+vCE2=V++vBE2

  vCE2=V++vBE2vEC4

  vCE2=5+0.6vEC4

  vCE2=5.6vEC4(2)

The collector currents, iC1=iC3

  iC1=IS1(evBE1VT)(1+vCE1VA1)(3)iC3=IS3(evEB3VT)(1+vEC3VA3).(4)

  Andic2=iC4

  iC2=IS2(evmaVr)(1+vCE2VA2)(5)

  iC4=IS4(evmtVT)(1+vEC4VA4)(6)

Assume that Q1 and Q2 are matched, then IS1=IS2IS and VA1=VA2VAN

Assume that Q3 and Q4 are slightly mismatched, so that IS3IS4 but still assume that

  VA3=VA4VAP. For v1=v2,

  vBB1=vBE2; also vEB3=vEB4=vEC3vEB

Taking ratio of equations (3), (5) produces,

  iC1iC2=IS1(evmVT)(1+vCE1VA1)IS2(evm2Vr)(1+vCE2VA2)iC1iC2=(1+vCB1VAN)(1+vCE2VAN).(7)

Taking ratio of equations (4). (6) produces,

  iC3iC4=IS3(evm2Vr)(1+vEC3VA3)IS4(eγEVT)(1+vEC4VA4)

  iC1iC2=IS3(1+vFBVAP)IS4(1+vEC4VAP)

  (ic1=ic3,ic2=ic4)(8)

From equations (7) and (8)

(1+vCF1VAN)(1+vCE2VAN)=IS3(1+vEBVAP)IS4(1+vEC4VAP)

  IS4=IS3(1+vEBVAP)(1+vCE2VAN)(1+vEC4VAP)(1+vCR1VAN)

  IS4=IS3(1+vEBVAP)(1+5.6vEC4VAN)(1+vEC4VAP)(1+vCR1VAN)

Substituting equations (1) and (2) in above equation,

  IS4=5×1015(1+0.680)(1+5.6vEC4120)(1+vEC480)(1+5120)

  IS4=5×1015(80+0.680)(120+5.6vEC4120)(80+vEC480)(120+5120)

  IS4=5×1015(80.6)(125.6vEC4)(80+vEC4)(125)

  IS4=3.224×1015(125.6vec4)(80+vEC4)(9)

Given vEC4=1.2V

Substituting this vEC4 value in equation (9),

  IS4=3.224×1015(125.61.2)(80+1.2)

  IS4=3.224×1015×124.481.2

  IS4=4.939×1015A

(c)

To determine

The value of IS4 for the given has a CE voltage.

(c)

Expert Solution
Check Mark

Answer to Problem 14.33P

The value of current IS4 is IS4=4.811×1015A

Explanation of Solution

Given:

Given bipolar active load diff-amp is,

  MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL), Chapter 14, Problem 14.33P , additional homework tip  3

Given parameters are:

  V+=5V

  V=5V

The transistor parameters are:

  VAN=120V

  VAP=80V

  vBE(npn)=vEB(pnp)=0.6V

  IS1=IS2

  Is3=5×1015A

  VEC4=2.5V

Calculation:

Let v1=v2

Since vEB3=0.6V=vBE1 , then for v1=v2

  vCE1=V+

  vCE1=5V(1)

Now

  vEC4+vCE2=V++vBE2

  vCE2=V++vBE2vEC4

  vCE2=5+0.6vEC4

  vCE2=5.6vEC4(2)

The collector currents, iC1=iC3

  iC1=IS1(evBE1VT)(1+vCE1VA1)(3)iC3=IS3(evEB3VT)(1+vEC3VA3).(4)

  Andic2=iC4

  iC2=IS2(evmaVr)(1+vCE2VA2)(5)

  iC4=IS4(evmtVT)(1+vEC4VA4)(6)

Assume that Q1 and Q2 are matched, then IS1=IS2IS and VA1=VA2VAN

Assume that Q3 and Q4 are slightly mismatched, so that IS3IS4 but still assume that

  VA3=VA4VAP. For v1=v2,

  vBB1=vBE2; also vEB3=vEB4=vEC3vEB

Taking ratio of equations (3), (5) produces,

  iC1iC2=IS1(evmVT)(1+vCE1VA1)IS2(evm2Vr)(1+vCE2VA2)iC1iC2=(1+vCB1VAN)(1+vCE2VAN).(7)

Taking ratio of equations (4). (6) produces,

  iC3iC4=IS3(evm2Vr)(1+vEC3VA3)IS4(eγEVT)(1+vEC4VA4)

  iC1iC2=IS3(1+vFBVAP)IS4(1+vEC4VAP)

  (ic1=ic3,ic2=ic4)(8)

From equations (7) and (8)

(1+vCF1VAN)(1+vCE2VAN)=IS3(1+vEBVAP)IS4(1+vEC4VAP)

  IS4=IS3(1+vEBVAP)(1+vCE2VAN)(1+vEC4VAP)(1+vCR1VAN)

  IS4=IS3(1+vEBVAP)(1+5.6vEC4VAN)(1+vEC4VAP)(1+vCR1VAN)

Substituting equations (1) and (2) in above equation,

  IS4=5×1015(1+0.680)(1+5.6vEC4120)(1+vEC480)(1+5120)

  IS4=5×1015(80+0.680)(120+5.6vEC4120)(80+vEC480)(120+5120)

  IS4=5×1015(80.6)(125.6vEC4)(80+vEC4)(125)

  IS4=3.224×1015(125.6vec4)(80+vEC4)(9)

Given vEC4=1.2V

Substituting this vEC4 value in equation (9),

  IS4=3.224×1015(125.62.5)(80+2.5)

  IS4=3.224×1015×123.182.5

  IS4=4.811×1015A

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The input reactance of an infinitesimal linear dipole of length 1/60 and radius a = x/200 is given by [In(/2a) - 11 X-120- tan(kl/2) Assuming the wire of the dipole is copper with a conductivity of 5.7 × 10'S/m. determine at f = 1 GHz the (a) loss resistance (b) radiation resistance (c) radiation efficiency input impedance
Q4- a) For the block diagram of control system shown below with its unit step response. Determine (K, a,damping ration, Maximum overshoot, Wn, Wd,ẞ, ts, tp, td, tr, and overall transfer function? C(1) ↑ 1.4 1.2 1 0.8 0.6 0.4 0.2 R(s) E(s) K C(s) $(s + α) 0.05 0.1 0.15 0.2 +2% -2%
Determine the power radiated for the antenna has the following specifications (48 ohm radiation resistance, 2 ohm loss resistance and 50 ohms reactance) connected to generator with 12 V open circuit and internal impedance 50 ohm via à long transmission line with 100 ohm characteristic impedance.

Chapter 14 Solutions

MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)

Ch. 14 - Find the closedloop input resistance of a voltage...Ch. 14 - An opamp with openloop parameters of AOL=2105 and...Ch. 14 - A 0.5 V input step function is applied at t=0 to a...Ch. 14 - The slew rate of the 741 opamp is 0.63V/s ....Ch. 14 - Prob. 14.8TYUCh. 14 - Prob. 14.8EPCh. 14 - Consider the active load bipolar duffamp stage in...Ch. 14 - Prob. 14.10EPCh. 14 - Prob. 14.11EPCh. 14 - Prob. 14.12EPCh. 14 - For the opamp circuit shown in Figure 14.28, the...Ch. 14 - Prob. 14.9TYUCh. 14 - List and describe five practical opamp parameters...Ch. 14 - What is atypical value of openloop, lowfrequency...Ch. 14 - Prob. 3RQCh. 14 - Prob. 4RQCh. 14 - Prob. 5RQCh. 14 - Prob. 6RQCh. 14 - Describe the gainbandwidth product property of a...Ch. 14 - Define slew rate and define fullpower bandwidth.Ch. 14 - Prob. 9RQCh. 14 - What is one cause of an offset voltage in the...Ch. 14 - Prob. 11RQCh. 14 - Prob. 12RQCh. 14 - Prob. 13RQCh. 14 - Prob. 14RQCh. 14 - Prob. 15RQCh. 14 - Prob. 16RQCh. 14 - Prob. 17RQCh. 14 - Prob. 14.1PCh. 14 - Consider the opamp described in Problem 14.1. In...Ch. 14 - Data in the following table were taken for several...Ch. 14 - Prob. 14.4PCh. 14 - Prob. 14.5PCh. 14 - Prob. 14.6PCh. 14 - Prob. 14.7PCh. 14 - Prob. 14.8PCh. 14 - An inverting amplifier is fabricated using 0.1...Ch. 14 - For the opamp used in the inverting amplifier...Ch. 14 - Prob. 14.11PCh. 14 - Consider the two inverting amplifiers in cascade...Ch. 14 - The noninverting amplifier in Figure P14.13 has an...Ch. 14 - For the opamp in the voltage follower circuit in...Ch. 14 - The summing amplifier in Figure P14.15 has an...Ch. 14 - Prob. 14.16PCh. 14 - Prob. 14.18PCh. 14 - Prob. 14.19PCh. 14 - Prob. 14.20PCh. 14 - Prob. 14.21PCh. 14 - Prob. 14.22PCh. 14 - Three inverting amplifiers, each with R2=150k and...Ch. 14 - Prob. 14.24PCh. 14 - Prob. 14.25PCh. 14 - Prob. 14.26PCh. 14 - Prob. 14.27PCh. 14 - Prob. D14.28PCh. 14 - Prob. 14.29PCh. 14 - Prob. 14.30PCh. 14 - Prob. 14.31PCh. 14 - Prob. 14.32PCh. 14 - Prob. 14.33PCh. 14 - Prob. 14.34PCh. 14 - Prob. 14.35PCh. 14 - Prob. 14.36PCh. 14 - Prob. 14.37PCh. 14 - In the circuit in Figure P14.38, the offset...Ch. 14 - Prob. 14.39PCh. 14 - Prob. 14.40PCh. 14 - Prob. 14.41PCh. 14 - Prob. 14.42PCh. 14 - Prob. 14.43PCh. 14 - Prob. 14.44PCh. 14 - Prob. 14.46PCh. 14 - Prob. D14.47PCh. 14 - Prob. 14.48PCh. 14 - Prob. 14.50PCh. 14 - Prob. 14.51PCh. 14 - Prob. D14.52PCh. 14 - Prob. D14.53PCh. 14 - Prob. 14.55PCh. 14 - Prob. 14.56PCh. 14 - Prob. 14.57PCh. 14 - The opamp in the difference amplifier...Ch. 14 - Prob. 14.61P
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
How a MOSFET Works - with animation! | Intermediate Electronics; Author: CircuitBread;https://www.youtube.com/watch?v=Bfvyj88Hs_o;License: Standard Youtube License