MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 14.18P
(a).
To determine
The 3-dB frequency of op-amp and 3-dB frequency of closed loop amplifier.
(b).
To determine
The magnitude of voltage gain for open loop and closed loop op-amp.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. In a common-source amplifier, the output voltage is
(a) 180° out of phase with the input
(b) in phase with the input
(c) taken at the source
(d) taken at the drain
(e) answers (a) and (c)
(f) answers (a) and (d)
2. In a certain common-source (CS) amplifier, Vas = 3.2 V rms and Veg = 280 mV rms. The
voltage gain is
(a) 1
(b) 11.4
(c) 8.75
(d) 3.2
3. In a certain CS amplifier, Rp = 1.0 kN, Rs = 560 2, VpD = 10 V, and gm = 4500 µS. If the
source resistor is completely bypassed, the voltage gain is
%3!
(a) 450
(b) 45
(c) 4.5
(d) 2.52
4. Ideally, the equivalent circuit of a FET contains
(a) a current source in series with a resistance
(b) a resistance between drain and source terminals
(c) a current source between gate and source terminals
(d) a current source between drain and source terminals
We examined the common source amplifier shown in the figure in the 5th experiment. The selection criterion of the input capacitance is XCin = 0.1Rin. Calculate the required input capacitance value, Cin , if an input signal with a frequency of 4 kHz is applied.
a square wave.
stion 9
vet
ered
It is the average of the two dc currents that flows into the inverting and non-
inverting inputs of an op-amp.
d out of
OInput Bias Current
question
O Input Offset Current
O Quiescent Operating Current
O Feedback Current
For the op-amp circuit below, which of the following statements is true?
Let Ad = 100,000 and + Vsat = + 5 V.
%3D
of
+6 V
on
99-
hp
近
Chapter 14 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Ch. 14 - Using the circuit and transistor parameters of...Ch. 14 - Prob. 14.2TYUCh. 14 - Prob. 14.1EPCh. 14 - Determine the closedloop input resistance at the...Ch. 14 - For a noninverting amplifier, the resistances are...Ch. 14 - An opamp with an openloop gain of AOL=105 is used...Ch. 14 - Prob. 14.3TYUCh. 14 - An operational amplifier connected in a...Ch. 14 - Prob. 14.5TYUCh. 14 - Prob. 14.6TYU
Ch. 14 - Find the closedloop input resistance of a voltage...Ch. 14 - An opamp with openloop parameters of AOL=2105 and...Ch. 14 - A 0.5 V input step function is applied at t=0 to a...Ch. 14 - The slew rate of the 741 opamp is 0.63V/s ....Ch. 14 - Prob. 14.8TYUCh. 14 - Prob. 14.8EPCh. 14 - Consider the active load bipolar duffamp stage in...Ch. 14 - Prob. 14.10EPCh. 14 - Prob. 14.11EPCh. 14 - Prob. 14.12EPCh. 14 - For the opamp circuit shown in Figure 14.28, the...Ch. 14 - Prob. 14.9TYUCh. 14 - List and describe five practical opamp parameters...Ch. 14 - What is atypical value of openloop, lowfrequency...Ch. 14 - Prob. 3RQCh. 14 - Prob. 4RQCh. 14 - Prob. 5RQCh. 14 - Prob. 6RQCh. 14 - Describe the gainbandwidth product property of a...Ch. 14 - Define slew rate and define fullpower bandwidth.Ch. 14 - Prob. 9RQCh. 14 - What is one cause of an offset voltage in the...Ch. 14 - Prob. 11RQCh. 14 - Prob. 12RQCh. 14 - Prob. 13RQCh. 14 - Prob. 14RQCh. 14 - Prob. 15RQCh. 14 - Prob. 16RQCh. 14 - Prob. 17RQCh. 14 - Prob. 14.1PCh. 14 - Consider the opamp described in Problem 14.1. In...Ch. 14 - Data in the following table were taken for several...Ch. 14 - Prob. 14.4PCh. 14 - Prob. 14.5PCh. 14 - Prob. 14.6PCh. 14 - Prob. 14.7PCh. 14 - Prob. 14.8PCh. 14 - An inverting amplifier is fabricated using 0.1...Ch. 14 - For the opamp used in the inverting amplifier...Ch. 14 - Prob. 14.11PCh. 14 - Consider the two inverting amplifiers in cascade...Ch. 14 - The noninverting amplifier in Figure P14.13 has an...Ch. 14 - For the opamp in the voltage follower circuit in...Ch. 14 - The summing amplifier in Figure P14.15 has an...Ch. 14 - Prob. 14.16PCh. 14 - Prob. 14.18PCh. 14 - Prob. 14.19PCh. 14 - Prob. 14.20PCh. 14 - Prob. 14.21PCh. 14 - Prob. 14.22PCh. 14 - Three inverting amplifiers, each with R2=150k and...Ch. 14 - Prob. 14.24PCh. 14 - Prob. 14.25PCh. 14 - Prob. 14.26PCh. 14 - Prob. 14.27PCh. 14 - Prob. D14.28PCh. 14 - Prob. 14.29PCh. 14 - Prob. 14.30PCh. 14 - Prob. 14.31PCh. 14 - Prob. 14.32PCh. 14 - Prob. 14.33PCh. 14 - Prob. 14.34PCh. 14 - Prob. 14.35PCh. 14 - Prob. 14.36PCh. 14 - Prob. 14.37PCh. 14 - In the circuit in Figure P14.38, the offset...Ch. 14 - Prob. 14.39PCh. 14 - Prob. 14.40PCh. 14 - Prob. 14.41PCh. 14 - Prob. 14.42PCh. 14 - Prob. 14.43PCh. 14 - Prob. 14.44PCh. 14 - Prob. 14.46PCh. 14 - Prob. D14.47PCh. 14 - Prob. 14.48PCh. 14 - Prob. 14.50PCh. 14 - Prob. 14.51PCh. 14 - Prob. D14.52PCh. 14 - Prob. D14.53PCh. 14 - Prob. 14.55PCh. 14 - Prob. 14.56PCh. 14 - Prob. 14.57PCh. 14 - The opamp in the difference amplifier...Ch. 14 - Prob. 14.61P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Frequency Response of Multistage Amplifiers 27. In a certain two-stage amplifier, the first stage has critical frequencies of 230 Hz and 1.2 MHz. The second stage has critical frequencies of 195 Hz and 2 MHz. What are the dominant critical frequencies?arrow_forwardQ2) for the amplifier shown in Figure 1) Determine the voltage gain (Av) and the current Gain (Ai) 2) Determine The input and output resistance 3) Determine The output voltage Vout 4) Draw The Ac load line 5) Draw the AC equivalent circuit 6) Determine the maximum input voltage (Vi(p-p)) for maximum output voltage (Vo(p-p)) without distortion. HH Vi-20 mv RB 56 kQ +₁ D B = 50 - 10 V HH RE 1kQ Vou RL • 10 Ω ww11arrow_forwarda) Calculate the VA voltage value.b) Given the input voltage (Vin) waveformin the above Op-amp circuit, Vtl (low)and Vtu (high) hysteresis crossoverCalculate the voltages. c) At the Vtl and Vtu transitions of the Vo voltageCalculate the position changes.arrow_forward
- We examined the common source amplifier shown in the figure in the 5th experiment. The selection criterion of the input capacitance is Xcin = 0.1Rin: Calculate the required input capacitance value, Cin , if an input signal with a frequency of 2 kHz is applied. Şekitde gösterilen ortak source yükseltecini 5. deneyde incelemiştik Giriş kapasitesinin seçim kriteri Xcin - 0.1Rin dir. 2 kHzlik giriç sinyali için gerektt tapasite, Cm değerini hesaplayınız. Circuit parameters / Devre Parametreleri R1 = 53 k2, R, = 17 k2 R1 RD Cout Vout D VDD M2 Cin G Vin R2 RS cs O a. 74.19 nF O b. 86.55 nF O c. 49.46 nF O d. 61.82 nF O e. 43.28 nFarrow_forwardIn a summing inverting amplifier,Rf is 100k ohms, V1 is a sinusoid with 2V amplitude and frequency of 1Hz ,R1 is 10k ohms, V2 is a sinusoid with 3V amplitude and frequency of 1Hz, and R2 is 10k ohms. Vs+ = 18 V and Vs- = ground. What is the output voltage? Please draw the waveform as well.arrow_forwardelectric , please solve question 3 and 4arrow_forward
- Q.) Figure below divider bras amplifier Circuit. Givent the model Parameter : gm = 5o mS emitter (CE) Voltage BJT hibrid- TT Shows a Common riT: 6 Kr and to %3D : 00 +Vc. RI C2 Tooks touf RL Vo ihe 200 RE TCE Vs 20 a Draw the Ac eQuivalent at low Freauency Circuit Zi and b.) Determine inPut impedance at mid FreaUincy OutPut imPedance Z0 c.) Calculafe two low Cut -oFF FreQuen Cies FLC1 and FLC2 Ci and E2 respectively Such as due to the exterda al capacitorsarrow_forwardAny help is greatly appreciatedarrow_forwardDesign a three-stage amplifier that is impedance matched (use an emitter follower in stage 2) with an overall voltage gain of approximately 400. The phase of the input and output signal should be maintained. The amplifier should have a usable bandwidth of approximately 20MHz. As engineers you are expected to provide mathematical calculations, circuit diagrams and simulations in multisim software. The simulations should show a sample input signal, its output signal and frequency response plot of the three-stage amplifier.arrow_forward
- H: Design OP-Amp eircwt that Poduce an out Put an given by Uo = - ( 4 V,t Uz to.l U3) If u, = 2 sinwt = 5 V and U3 = - 100V sketch the ont Put vo ltage waveform ?arrow_forwardD please and thank youarrow_forwardSketch the output voltage against time diagram for the values given in Q4 in the following cases: a) Vin is a sine wave with peak-to-peak voltage of 8 V and period of 5 ms. b) Vin is a sine wave with peak-to-peak voltage of 4 V and period of 5 ms. +Vs Vin A Vout V. -Vs R2 + R1 Vref Figure 2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Electrical Engineering: Ch 5: Operational Amp (2 of 28) Inverting Amplifier-Basic Operation; Author: Michel van Biezen;https://www.youtube.com/watch?v=x2xxOKOTwM4;License: Standard YouTube License, CC-BY