MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 14.42P
a.
To determine
The design parameters of a bias current compensated amplifier for the given specifications.
b.
To determine
The design parameters of a bias current compensated amplifier for the given specifications.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5) With reference to the circuit diagram given below describe in detail the operation of the circuit diagram with all
the applicable waveforms for output voltage, out put current and voltage across the thyristors with alpha=90
degrees
Vs =
Vo
V„ sin wr
(a)
A piezoelectric force transducer has a charge sensitivity of 20 pC/N. It is connected to a charge amplifier and
overall gain of transducer and amplifier is 50 mV/N. The gain of amplifier is
O 2.5mV/pC
O 1mV/pC
O 1.5mV/pC
O 4mV/pC
a) For an opamp, the input bias current Ib =60uA and the input offset current lio= 10uA
Find the input base currents l and I
b) Design an opamp circuit with the following output: Vo = - Vin/4 + 2
For the circuit given below
Given :Vin-0.2V, Vsat= 12V
Identify (name) the circuit (stage 1 and 2)
O Find the output voltage Vo and the current through the load 4kn
0 Find Vo if the resistor 2kn opens
10
Stage
Stage 2
Vo
Vin
Chapter 14 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Ch. 14 - Using the circuit and transistor parameters of...Ch. 14 - Prob. 14.2TYUCh. 14 - Prob. 14.1EPCh. 14 - Determine the closedloop input resistance at the...Ch. 14 - For a noninverting amplifier, the resistances are...Ch. 14 - An opamp with an openloop gain of AOL=105 is used...Ch. 14 - Prob. 14.3TYUCh. 14 - An operational amplifier connected in a...Ch. 14 - Prob. 14.5TYUCh. 14 - Prob. 14.6TYU
Ch. 14 - Find the closedloop input resistance of a voltage...Ch. 14 - An opamp with openloop parameters of AOL=2105 and...Ch. 14 - A 0.5 V input step function is applied at t=0 to a...Ch. 14 - The slew rate of the 741 opamp is 0.63V/s ....Ch. 14 - Prob. 14.8TYUCh. 14 - Prob. 14.8EPCh. 14 - Consider the active load bipolar duffamp stage in...Ch. 14 - Prob. 14.10EPCh. 14 - Prob. 14.11EPCh. 14 - Prob. 14.12EPCh. 14 - For the opamp circuit shown in Figure 14.28, the...Ch. 14 - Prob. 14.9TYUCh. 14 - List and describe five practical opamp parameters...Ch. 14 - What is atypical value of openloop, lowfrequency...Ch. 14 - Prob. 3RQCh. 14 - Prob. 4RQCh. 14 - Prob. 5RQCh. 14 - Prob. 6RQCh. 14 - Describe the gainbandwidth product property of a...Ch. 14 - Define slew rate and define fullpower bandwidth.Ch. 14 - Prob. 9RQCh. 14 - What is one cause of an offset voltage in the...Ch. 14 - Prob. 11RQCh. 14 - Prob. 12RQCh. 14 - Prob. 13RQCh. 14 - Prob. 14RQCh. 14 - Prob. 15RQCh. 14 - Prob. 16RQCh. 14 - Prob. 17RQCh. 14 - Prob. 14.1PCh. 14 - Consider the opamp described in Problem 14.1. In...Ch. 14 - Data in the following table were taken for several...Ch. 14 - Prob. 14.4PCh. 14 - Prob. 14.5PCh. 14 - Prob. 14.6PCh. 14 - Prob. 14.7PCh. 14 - Prob. 14.8PCh. 14 - An inverting amplifier is fabricated using 0.1...Ch. 14 - For the opamp used in the inverting amplifier...Ch. 14 - Prob. 14.11PCh. 14 - Consider the two inverting amplifiers in cascade...Ch. 14 - The noninverting amplifier in Figure P14.13 has an...Ch. 14 - For the opamp in the voltage follower circuit in...Ch. 14 - The summing amplifier in Figure P14.15 has an...Ch. 14 - Prob. 14.16PCh. 14 - Prob. 14.18PCh. 14 - Prob. 14.19PCh. 14 - Prob. 14.20PCh. 14 - Prob. 14.21PCh. 14 - Prob. 14.22PCh. 14 - Three inverting amplifiers, each with R2=150k and...Ch. 14 - Prob. 14.24PCh. 14 - Prob. 14.25PCh. 14 - Prob. 14.26PCh. 14 - Prob. 14.27PCh. 14 - Prob. D14.28PCh. 14 - Prob. 14.29PCh. 14 - Prob. 14.30PCh. 14 - Prob. 14.31PCh. 14 - Prob. 14.32PCh. 14 - Prob. 14.33PCh. 14 - Prob. 14.34PCh. 14 - Prob. 14.35PCh. 14 - Prob. 14.36PCh. 14 - Prob. 14.37PCh. 14 - In the circuit in Figure P14.38, the offset...Ch. 14 - Prob. 14.39PCh. 14 - Prob. 14.40PCh. 14 - Prob. 14.41PCh. 14 - Prob. 14.42PCh. 14 - Prob. 14.43PCh. 14 - Prob. 14.44PCh. 14 - Prob. 14.46PCh. 14 - Prob. D14.47PCh. 14 - Prob. 14.48PCh. 14 - Prob. 14.50PCh. 14 - Prob. 14.51PCh. 14 - Prob. D14.52PCh. 14 - Prob. D14.53PCh. 14 - Prob. 14.55PCh. 14 - Prob. 14.56PCh. 14 - Prob. 14.57PCh. 14 - The opamp in the difference amplifier...Ch. 14 - Prob. 14.61P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Draw the output on top of the input waveforms for the circuits below. For all circuits in this question, assume that +Vout(max)= +10V and -Vout(max)= -10V .arrow_forward5) With reference to the circuit diagram given below describe in detail the operation of the circuit diagram with all the applicable waveforms for output voltage, out put current and voltage across the thyristors with alpha=90 degrees Vs = Vm sin wr Vo (a)arrow_forwardCan you please sketch and solve for the given values.arrow_forward
- a) Calculate the VA voltage value.b) Given the input voltage (Vin) waveformin the above Op-amp circuit, Vtl (low)and Vtu (high) hysteresis crossoverCalculate the voltages. c) At the Vtl and Vtu transitions of the Vo voltageCalculate the position changes.arrow_forward1- a) Draw the circuit of a V-I converter and derive an expression for the output current in terms of input voltage. b) Draw the neat diagram of analog multiplier using log-antilog amplifiers and explain its operationarrow_forwardI need the answer as soon as possiblearrow_forward
- (79) The Peak-to-Peak Output Voitage of a transistor-based is not limited by the Circuit used to amplify it. amplifier swort TRUE OR FALSE? b (1) A full-wave rectifier with a capacitor Filter will produce Perfect Dc voitage out Put TRUE OR FALSE?" Q ad Vac Ⓒ The Purpose of the Feedback resistor in a practical Integrator is to allow the low-freq gaim to become as Lage Possible AMOA al love as TRUE OR FALSEramato (®) et (@ Varrow_forwardUse the following circuit to design an oscillator of 5 kHz output. The amplifier used in this oscillator is multistage C.S. with source resistance amplifier. The design must be with minimum No. of stages. Use the following FET parameters Id=2mA, gm=2.5 ms and rds = 40kN. Use VDD = 24V L R Vo Viarrow_forwardGiven a inverting op-amp with Vin= 1Vpk,1kHz and Rin=1kΩ , Rf=2kΩ, VEE=-5V, VCC= 5V, Explain the output waveform, voltage gain, and it's phase of the circuit.arrow_forward
- A certain op-amp has an open-loop gain of 80,000. The maximum saturated output levels of this particular device are + 12 when the dc supply voltages are ±15. If a differential voltage of^15 mV rms is applied between the inputs, what is the peak-to-peak value of the output?arrow_forwardDraw the output on top of the input waveforms for the circuits below. For all circuits in this question, assume that +Vout(max)= +10V and -Vout(max)= -10V .arrow_forwardDesign an op-amp circuit to yield the relationship shown in each equation. Vo = 8A + 8B – 3C – 12Da.) Rmin = 9KΩb.) Rin = 9KΩarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Multistage Transistor Audio Amplifier Circuit; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=LJrL9N9uhkE;License: Standard Youtube License