MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
4th Edition
ISBN: 9781266368622
Author: NEAMEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 14.4P
(a)
To determine
Percent difference between the actual and the ideal gain of the given inverting amplifier.
(b)
To determine
Percent difference between the actual and the ideal gain of the given inverting amplifier.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Write down what the series includes and determine the size the gain if Vi = 6V, Rf = 50 kOhm and Ri = 5kOhm!
4. Calculate the output voltage of each of the following op-amp circuit.
X1
Hop
thi
-1.5V
Y11V
R3
1kQ
VCC
15.0V
VEE
-15.0V
U1
-741
VCC
15.0V
VEE
-15.0V
R4
2kQ
741
U2
R1
22.210.
R2
• 1 ΚΩ
ww/li
R5
ww
1kQ
R6
1kQ
VCC
15:0V
VEE
-15.0V
R7
1k0
U3
741
VOUT
5) With reference to the circuit diagram given below describe in detail the operation of the circuit diagram with all
the applicable waveforms for output voltage, out put current and voltage across the thyristors with alpha=90
degrees
Vs =
Vo
V„ sin wr
(a)
Chapter 14 Solutions
MICROELECT. CIRCUIT ANALYSIS&DESIGN (LL)
Ch. 14 - Using the circuit and transistor parameters of...Ch. 14 - Prob. 14.2TYUCh. 14 - Prob. 14.1EPCh. 14 - Determine the closedloop input resistance at the...Ch. 14 - For a noninverting amplifier, the resistances are...Ch. 14 - An opamp with an openloop gain of AOL=105 is used...Ch. 14 - Prob. 14.3TYUCh. 14 - An operational amplifier connected in a...Ch. 14 - Prob. 14.5TYUCh. 14 - Prob. 14.6TYU
Ch. 14 - Find the closedloop input resistance of a voltage...Ch. 14 - An opamp with openloop parameters of AOL=2105 and...Ch. 14 - A 0.5 V input step function is applied at t=0 to a...Ch. 14 - The slew rate of the 741 opamp is 0.63V/s ....Ch. 14 - Prob. 14.8TYUCh. 14 - Prob. 14.8EPCh. 14 - Consider the active load bipolar duffamp stage in...Ch. 14 - Prob. 14.10EPCh. 14 - Prob. 14.11EPCh. 14 - Prob. 14.12EPCh. 14 - For the opamp circuit shown in Figure 14.28, the...Ch. 14 - Prob. 14.9TYUCh. 14 - List and describe five practical opamp parameters...Ch. 14 - What is atypical value of openloop, lowfrequency...Ch. 14 - Prob. 3RQCh. 14 - Prob. 4RQCh. 14 - Prob. 5RQCh. 14 - Prob. 6RQCh. 14 - Describe the gainbandwidth product property of a...Ch. 14 - Define slew rate and define fullpower bandwidth.Ch. 14 - Prob. 9RQCh. 14 - What is one cause of an offset voltage in the...Ch. 14 - Prob. 11RQCh. 14 - Prob. 12RQCh. 14 - Prob. 13RQCh. 14 - Prob. 14RQCh. 14 - Prob. 15RQCh. 14 - Prob. 16RQCh. 14 - Prob. 17RQCh. 14 - Prob. 14.1PCh. 14 - Consider the opamp described in Problem 14.1. In...Ch. 14 - Data in the following table were taken for several...Ch. 14 - Prob. 14.4PCh. 14 - Prob. 14.5PCh. 14 - Prob. 14.6PCh. 14 - Prob. 14.7PCh. 14 - Prob. 14.8PCh. 14 - An inverting amplifier is fabricated using 0.1...Ch. 14 - For the opamp used in the inverting amplifier...Ch. 14 - Prob. 14.11PCh. 14 - Consider the two inverting amplifiers in cascade...Ch. 14 - The noninverting amplifier in Figure P14.13 has an...Ch. 14 - For the opamp in the voltage follower circuit in...Ch. 14 - The summing amplifier in Figure P14.15 has an...Ch. 14 - Prob. 14.16PCh. 14 - Prob. 14.18PCh. 14 - Prob. 14.19PCh. 14 - Prob. 14.20PCh. 14 - Prob. 14.21PCh. 14 - Prob. 14.22PCh. 14 - Three inverting amplifiers, each with R2=150k and...Ch. 14 - Prob. 14.24PCh. 14 - Prob. 14.25PCh. 14 - Prob. 14.26PCh. 14 - Prob. 14.27PCh. 14 - Prob. D14.28PCh. 14 - Prob. 14.29PCh. 14 - Prob. 14.30PCh. 14 - Prob. 14.31PCh. 14 - Prob. 14.32PCh. 14 - Prob. 14.33PCh. 14 - Prob. 14.34PCh. 14 - Prob. 14.35PCh. 14 - Prob. 14.36PCh. 14 - Prob. 14.37PCh. 14 - In the circuit in Figure P14.38, the offset...Ch. 14 - Prob. 14.39PCh. 14 - Prob. 14.40PCh. 14 - Prob. 14.41PCh. 14 - Prob. 14.42PCh. 14 - Prob. 14.43PCh. 14 - Prob. 14.44PCh. 14 - Prob. 14.46PCh. 14 - Prob. D14.47PCh. 14 - Prob. 14.48PCh. 14 - Prob. 14.50PCh. 14 - Prob. 14.51PCh. 14 - Prob. D14.52PCh. 14 - Prob. D14.53PCh. 14 - Prob. 14.55PCh. 14 - Prob. 14.56PCh. 14 - Prob. 14.57PCh. 14 - The opamp in the difference amplifier...Ch. 14 - Prob. 14.61P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Determine the type of opamp circuit, the gain and the output voltage of the circuit for each of the operational amp circuits belowarrow_forwardIn current summing, the summing network is connected in to the input. * None of the choices both a and b series can't determine All of the choices parallel -14 dB/octave means * None of the choices A reduction of op-amp's voltage gain by a factor of five each time the frequency double. All of the choices A reduction of op-amp's voltage gain by a factor of three each time the frequency double. A reduction of op-amp's voltage gain by a factor of two each time the frequency double. A reduction of op-amp's voltage gain by a factor of four each time the frequency double. An increase of op-amp's voltage gain by a factor of four each time the frequency double. Created by SEASOFT LTD.arrow_forwardVin A PEAK DETECTOR Р R= 10kΩ Given/Assumptions: RL=10K C=0.1uF + ANSWER THE FOLLOWING: Rf= 10kQ ww V X D с RL diode cut-in voltage = 0.7V. when the op-amp goes open-loop, Vx will be +12V when Vp>Vn and -12V when Vparrow_forward5) With reference to the circuit diagram given below describe in detail the operation of the circuit diagram with all the applicable waveforms for output voltage, out put current and voltage across the thyristors with alpha=90 degrees Vs = Vm sin wr Vo (a)arrow_forwardFrom the below op-amp design, the maximum Vout equals +10 R1 U1 V1 7Vrms 60HZ 0 10ka Vout R3 V2 7Vrms 60HZ 20ka OPO7AH 6-10 R4 0° 20ka R2 10ka O 29.68 V O 19.78 V O 10 O 12arrow_forwardanswer fastarrow_forwardDraw the output waveform on the top of the input waveforms for this circuit, Assume that +Vout(max)= +10V and -Vout(max)= -10V .arrow_forward92 ۱ ۹:۱ ص Qs= 1107 and Qp= 1041 Qs= 1207 and Qp= 1241 Qs= 1007 and Qp= 1041 Qs= 1107 and Qp= 1141 In the figure shown below we can find output current is equal to.. . if the input voltage is equal to 12 mv 12 kO 12 ka 6 ka No option is correct 10 = 32 uA 10 = 34 uA 10 = 38 uA 10 = 36 uA In the fig. shown below we can find the higher critical frequency due to the inputarrow_forward5arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Multistage Transistor Audio Amplifier Circuit; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=LJrL9N9uhkE;License: Standard Youtube License