Microelectronics: Circuit Analysis and Design
4th Edition
ISBN: 9780073380643
Author: Donald A. Neamen
Publisher: McGraw-Hill Companies, The
expand_more
expand_more
format_list_bulleted
Question
Chapter 4, Problem 4.1EP
To determine
The value of width to length ratio for given values.
Expert Solution & Answer
Answer to Problem 4.1EP
Explanation of Solution
Given information:
The given values are
Calculation:
The value for W / Lis given by
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A three-phase transmission line supplies power to three loads at a voltage
408 Vrms (line to line). The loads are as follows:
Load 1:
S₁ = 100+ j50 VA
Load 2:
S₂ = 40-j20 VA
Load 3:
S3 = 10 + j0 VA
Find the magnitude of the line current | Line and the combined power factor of
the loads.
Hint:
Steral \= √3 | Vime |× | Ime |
line
line
Can you show why the answer to this question R = 199 ohm?
2.5. Find the half-power beamwidth (HPBW) and first-null beamwidth (FNBW), in radians and degrees, for the following normalized radiation intensities: (a) U(9) cos θ cos(20) (b) U(θ)-cos2 θ cos2(26) (c) U(θ) = cos(θ) cos(30) (0 < θ < 900,0 < φ 360) (d) U(t) = cos2(9) cos2(39) (e) U(9) = cos(29) cos(39) (f) U (ecos (20) cos (30)
Chapter 4 Solutions
Microelectronics: Circuit Analysis and Design
Ch. 4 - Prob. 4.1EPCh. 4 - For the circuit shown in Figure 4.1, VDD=3.3V and...Ch. 4 - Prob. 4.1TYUCh. 4 - For the circuit shown in Figure 4.1, VDD=3.3V and...Ch. 4 - For the circuit in Figure 4.1, the circuit and...Ch. 4 - The parameters for the circuit in Figure 4.8 are...Ch. 4 - A transistor has the same parameters as those...Ch. 4 - The parameters of the circuit shown in Figure 4.14...Ch. 4 - Consider the circuit shown in Figure 4.14. Assume...Ch. 4 - For the circuit shown in Figure 4.19, the...
Ch. 4 - The commonsource amplifier in Figure 4.23 has...Ch. 4 - Consider the commonsource amplifier in Figure 4.24...Ch. 4 - The parameters of the transistor shown in Figure...Ch. 4 - The sourcefollower circuit in Figure 4.26 has...Ch. 4 - The circuit and transistor parameters for the...Ch. 4 - Consider the circuit shown in Figure 4.28 with...Ch. 4 - Prob. 4.8TYUCh. 4 - The transistor in the sourcefollower circuit shown...Ch. 4 - Consider the circuit shown in Figure 4.35 with...Ch. 4 - For the circuit shown in Figure 4.32, the circuit...Ch. 4 - The bias voltage for the enhancementload amplifier...Ch. 4 - Assume the depletionload amplifier in Figure...Ch. 4 - For the circuit shown in Figure 4.45(a), assume...Ch. 4 - The transconductance gm of the transistor in the...Ch. 4 - The transconductance gm of the transistor in the...Ch. 4 - For the enhancement load amplifier shown in Figure...Ch. 4 - For the cascade circuit shown in Figure 4.49, the...Ch. 4 - The transistor parameters of the NMOS cascode...Ch. 4 - The transistor parameters of the circuit in Figure...Ch. 4 - Reconsider the sourcefollower circuit shown in...Ch. 4 - Prob. 4.13TYUCh. 4 - For the circuit shown in Figure 4.59, the...Ch. 4 - Discuss, using the concept of a load line, how a...Ch. 4 - How does the transistor widthtolength ratio affect...Ch. 4 - Discuss the physical meaning of the smallsignal...Ch. 4 - Prob. 4RQCh. 4 - Prob. 5RQCh. 4 - Discuss the general conditions under which a...Ch. 4 - Why, in general, is the magnitude of the voltage...Ch. 4 - What are the changes in dc and ac characteristics...Ch. 4 - Sketch a simple sourcefollower amplifier circuit...Ch. 4 - Sketch a simple commongate amplifier circuit and...Ch. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - State the advantage of using transistors in place...Ch. 4 - Prob. 14RQCh. 4 - An NMOS transistor has parameters VTN=0.4V ,...Ch. 4 - A PMOS transistor has parameters VTP=0.6V ,...Ch. 4 - An NMOS transistor is biased in the saturation...Ch. 4 - The minimum value of smallsignal resistance of a...Ch. 4 - An nchannel MOSFET is biased in the saturation...Ch. 4 - The value of for a MOSFET is 0.02V1 . (a) What is...Ch. 4 - Prob. 4.7PCh. 4 - The parameters of the circuit in Figure 4.1 are...Ch. 4 - The circuit shown in Figure 4.1 has parameters...Ch. 4 - For the circuit shown in Figure 4.1, the...Ch. 4 - In our analyses, we assumed the smallsignal...Ch. 4 - Using the results of Problem 4.11, find the peak...Ch. 4 - Consider the circuit in Figure 4.14 in the text....Ch. 4 - A commonsource amplifier, such as shown in Figure...Ch. 4 - For the NMOS commonsource amplifier in Figure...Ch. 4 - The parameters of the circuit shown in Figure...Ch. 4 - Repeat Problem 4.15 if the source resistor is...Ch. 4 - The ac equivalent circuit of a commonsource...Ch. 4 - Consider the ac equivalent circuit shown in Figure...Ch. 4 - The transistor in the commonsource amplifier in...Ch. 4 - The parameters of the MOSFET in the circuit shown...Ch. 4 - For the commonsource amplifier in Figure P4.22,...Ch. 4 - The transistor in the commonsource circuit in...Ch. 4 - Prob. 4.24PCh. 4 - For the commonsource circuit in Figure P4.24, the...Ch. 4 - Design the common-source circuit in Figure P4.26...Ch. 4 - For the commonsource amplifier shown in Figure...Ch. 4 - For the circuit shown in Figure P4.28, the...Ch. 4 - Design a commonsource amplifier, such as that in...Ch. 4 - The smallsignal parameters of an enhancementmode...Ch. 4 - The opencircuit (RL=) voltage gain of the ac...Ch. 4 - Consider the sourcefollower circuit in Figure...Ch. 4 - The source follower amplifier in Figure P4.33 is...Ch. 4 - Consider the circuit in Figure P4.34. The...Ch. 4 - The quiescent power dissipation in the circuit in...Ch. 4 - The parameters of the circuit in Figure P4.36 are...Ch. 4 - Consider the source follower circuit in Figure...Ch. 4 - For the sourcefollower circuit shown in Figure...Ch. 4 - In the sourcefollower circuit in Figure P4.39 with...Ch. 4 - For the circuit in Figure P4.39, RS=1k and the...Ch. 4 - Prob. D4.41PCh. 4 - The current source in the sourcefollower circuit...Ch. 4 - Consider the sourcefollower circuit shown in...Ch. 4 - Prob. 4.44PCh. 4 - Figure P4.45 is the ac equivalent circuit of a...Ch. 4 - The transistor in the commongate circuit in Figure...Ch. 4 - The smallsignal parameters of the NMOS transistor...Ch. 4 - For the commongate circuit in Figure P4.48, the...Ch. 4 - Consider the PMOS commongate circuit in Figure...Ch. 4 - The transistor parameters of the NMOS device in...Ch. 4 - The parameters of the circuit shown in Figure 4.32...Ch. 4 - For the commongate amplifier in Figure 4.35 in the...Ch. 4 - Consider the NMOS amplifier with saturated load in...Ch. 4 - For the NMOS amplifier with depletion load in...Ch. 4 - Consider a saturated load device in which the gate...Ch. 4 - The parameters of the transistors in the circuit...Ch. 4 - A sourcefollower circuit with a saturated load is...Ch. 4 - For the sourcefollower circuit with a saturated...Ch. 4 - The transistor parameters for the commonsource...Ch. 4 - Consider the circuit in Figure P4.60. The...Ch. 4 - The ac equivalent circuit of a CMOS commonsource...Ch. 4 - Consider the ac equivalent circuit of a CMOS...Ch. 4 - The parameters of the transistors in the circuit...Ch. 4 - Consider the sourcefollower circuit in Figure...Ch. 4 - Figure P4.65 shows a commongate amplifier. The...Ch. 4 - The ac equivalent circuit of a CMOS commongate...Ch. 4 - The circuit in Figure P4.67 is a simplified ac...Ch. 4 - Prob. 4.68PCh. 4 - The transistor parameters in the circuit in Figure...Ch. 4 - Consider the circuit shown in Figure P4.70. The...Ch. 4 - For the circuit in Figure P4.71, the transistor...Ch. 4 - For the cascode circuit in Figure 4.51 in the...Ch. 4 - The supply voltages to the cascode circuit in...Ch. 4 - Consider the JFET amplifier in Figure 4.53 with...Ch. 4 - For the JFET amplifier in Figure P4.75, the...Ch. 4 - The parameters of the transistor in the JFET...Ch. 4 - Consider the sourcefollower WET amplifier in...Ch. 4 - For the pchannel JFET sourcefollower circuit in...Ch. 4 - The pchannel JFET commonsource amplifier in Figure...Ch. 4 - Prob. 4.82CSPCh. 4 - A discrete commonsource circuit with the...Ch. 4 - Consider the commongate amplifier shown in Figure...Ch. 4 - A sourcefollower amplifier with the configuration...
Knowledge Booster
Similar questions
- Don't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answerarrow_forwardA 60 Hz, 230 kV, 275 km long, uncompensated three-phase transmission line consists of three conductors bundled by phase, such that each conductor in the line is of the ACSR Falcon type. The separation between each bundled conductor is d = 45 cm and the separation between each phase of the line is 2.4 m. Calculate: "The parameters R, L, C of the line in Q2/km; µH/m and nF/m. And the total values of ZL and YC in Q and S, respectively, and in polar coordinates." Generalized constants A, B, C and D of the line, according to the type of transmission line. Present the results in rectangular coordinates. If a three-phase wye load draws 3/4 of the nominal current of the 300 MW system with FP = 0.85 lagging and at 230 kV, calculate: (a) Current at the load in KA (b) Voltage at the source in KV, (c) Current at the source in kA and (d) power at the source in MVA. Obtain the results per phase. Transmission line voltage regulation percentagearrow_forward
- Determine the required EMT size for the following combination of conductors:18. Four 8 AWG Type THW and four 12 AWG Type THW:19. Three 350 kcmil and one 250 kcmil Type XHHW conductors and a 4 AWG bare conductor:20. In a nonmetallic-sheathed (Type NM) cable installation, a 10⁄3 with equipmentgrounding conductor is installed in a metal octagonal box to supply two 12⁄2 withequipment grounding conductor branch-circuit cables. What is the minimum sizebox? The box contains internal cable clampsarrow_forwardFor problems 8 and 9, determine the correct box size for each of the following conditions:8. Two nonmetallic sheathed cables with two 12 AWG conductors, an equipment groundingconductor, and a switch in a metal box without a plaster ring.9. A raceway run serving a series of luminaires, connected to a total of three circuits. Theluminaires are supplied by 120 volts from a 3-phase, 4-wire system. Each box will containtwo circuits running through the box and a third circuit connected to a luminaire, which issupported by a luminaire stud in the box. Use 12 AWG Type THHN conductors.arrow_forward28. The minimum size raceway for the following conductors is: a. Three, 250 kcmil conductors with XHHW insulation b. One, 3⁄0 AWG conductor with XHHW insulation c. One, 4 AWG conductor with XHHW insulation29. The minimum size raceway for the following conductors is: a. Twelve, 6 AWG conductors with THHN insulation b. Nine, 8 AWG conductors with THHN insulation c. Eighteen, 10 AWG conductor with THHN insulation d. One, 10 AWG equipment grounding conductor with THHN insulation30. The minimum size wireway for the following with parallel conductors is: a. Two sets of three, 250 kcmil conductors with XHHW insulation b. Two, 3⁄0 AWG conductors with XHHW insulation c. 1, 4 AWG conductor with XHHW insulation d. The conductors terminate on three power distribution blocks. Each one has adimension of 4 in. wide and 3 in. high:arrow_forward
- box fill calculationsarrow_forwardTwo trade size 3 raceways enter a pull box directly across from each other. No other raceways enter the box. What are the minimum dimensions of the box?11. Length ______________________12. Width ______________________13. Depth ______________________Two trade size 3 raceways enter a pull box at right angles to each other. No other racewaysenter the box. What are the minimum dimensions of the box?14. Length ______________________15. Width ______________________16. Depth ______________________arrow_forwardnot use ai pleasearrow_forward
- For Questions 21, 22, and 23, two 3-in. raceways enter a pull box, one through a side and theother in the back. Four 500 kcmil, type THHN conductors will be installed in the raceway.No other raceways enter the box. What are the minimum dimensions of the pull box 21. Length ________________22. Width ________________23. Depth ________________arrow_forwardFor Questions 24, 25, 26, and 27, determine the answers using the information shown in the drawing. Trade size 2 conduit Trade size 2 conduit Trade size 3 conduit Trade size 3 conduit Trade size 2 conduit Trade size 2 conduit 24. Dimension a must be at least. 25. Dimension b must be at least the same conductors). inches. inches (the raceways contain inches. 26. Dimension c must be at least 27. Do you foresee any difficulties in installing the conductors in these raceways? Explain.arrow_forwardFor problems 1-4, select from the following list of raceway types. Check the letter(s) representing the correct response(s): a. electrical metallic tubing b. electrical nonmetallic tubing c. flexible metallic tubing d. rigid metal conduit e. intermediate metal conduit f. rigid nonmetallic conduit 1. Which raceway(s) may be used where cinder fill is present? ☐ a. ☐ b. ☐ c. ☐ d. ☐ e. 2. Which raceway(s) may be used in hazardous locations? ☐ a. b. ☐ c. ☐ d. 3. Which raceway(s) may be used in wet locations? ☐ a. ☐ b. ☐ c. ☐ d. ☐e. ☐ ☐ e. ☐ f. ☐ d. ☐ e. ☐ f. 4. Which raceway(s) may be used for service entrances? ☐ c. ☐ a. O b.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,