![Microelectronics: Circuit Analysis and Design](https://www.bartleby.com/isbn_cover_images/9780073380643/9780073380643_largeCoverImage.gif)
The transistor parameters of the circuit in Figure 4.49 are
(a)
![Check Mark](/static/check-mark.png)
The drain current and the individual drain to source voltages of the transistors in NMOS cascade circuit with given transistor parameters.
Answer to Problem 4.12TYU
The quiescent drain current of the transistors are
The drain to source voltage at Q-point for the transistors are
Explanation of Solution
Given Information:
An NMOS cascade device with transistor parameters
Calculation:
Consider the common source amplifier in cascade with a source follower circuit in Figure 1. Here, transistor M1 is operated in common-source configuration and M2 is operated in common-gate configuration.
The drain current and gate to source voltage of both the transistors are the same.
The drain current is given by,
The gate to source voltage is given by,
Considering the transistor M1 , the gate voltage for the transistor M1 is,
Substituting the resistance values from the circuit and the bias voltage, the gate voltage is obtained as,
Now, the source voltage is ,
Substituting the resistance value,
Thus, gate source voltage in terms of first transistor is ,
Substituting the expression for gate source voltage in (1), the drain current for transistor M1 in quiescent condition is,
On rearranging the above equation, the final quadratic equation is obtained as
Since the transistor is in saturation, the lower value among the two is considered. Hence, the drain current for the first transistor is,
Now, the drain to source voltage for the transistor M1 can be expressed as,
Substituting the values of parameters,
Considering the transistor M2, the gate voltage is same as the drain voltage of transistor M1, given by
The source voltage is given by,
The gate source voltage is therefore,
The drain current for transistor M2 is given by,
Solving the above expression, the final quadratic equation is obtained as,
Thus, the equation is given by,
Since the transistor is in saturation, the lower value among the two is considered. Hence, the drain current for the second transistor is,
Now, the drain to source voltage for the transistor M2 at Q-point can be expressed as,
Substituting the values of parameters,
(b)
![Check Mark](/static/check-mark.png)
The voltage gain of an NMOS cascade circuit with given transistor parameters.
Answer to Problem 4.12TYU
The voltage gain is given by
Explanation of Solution
Given Information:
:An NMOS cascade device with transistor parameters
Calculation:
Consider the common source amplifier in cascade with a source follower circuit in Figure 1. Here, transistor M1 is operated in common-source configuration and M2 is operated in common-gate configuration.
The voltage gain of the circuit is expressed as,
Here,
Now, the transconductance of the amplifier is given by,
Considering quiescent value of drain current,
Similarly, the transconductance of the second transistor is,
Substituting the transconductance values and the resistor values, the voltage gain is given by,
(c)
![Check Mark](/static/check-mark.png)
The output resistance of an NMOS cascade circuit with given transistor parameters.
Answer to Problem 4.12TYU
The output resistance is given by
Explanation of Solution
Given Information:
An NMOS cascade device with transistor parameters
Calculation:
The output resistance of the circuit is that of the output resistance of the emitter follower circuit which is low. It can be deduced from the small signal equivalent circuit shown below.
As it appears in the circuit, the output resistance of the circuit excluding the load resistance is obtained by considering the Kirchoff’s current law at the output node x which is,
This implies, the output resistance is given by,
Substituting the resistance and transconductance value,
Want to see more full solutions like this?
Chapter 4 Solutions
Microelectronics: Circuit Analysis and Design
- I need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardNO AI PLEASE.arrow_forward2-3) For each of the two periodic signals in the figures below, find the exponential Fourier series and sketch the magnitude and angle spectra. -5 ΟΙ 1 1- (a) (b) -20π -10x -π Π 10m 20m 1-arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardIn the op-amp circuit shown in Fig. P8.32,uin(t) = 12cos(1000t) V,R = 10 k Ohm , RL = 5 k Ohm, and C = 1 μF. Determine the complexpower for each of the passive elements in the circuit. Isconservation of energy satisfied?arrow_forward2-4) Similar to Lathi & Ding prob. 2.9-4 (a) For signal g(t)=t, find the exponential Fourier series to represent g(t) over the interval(0, 1). (b) Sketch the original signal g(t) and the everlasting signal g'(t) represented by the same Fourier series. (c) Verify Parseval's theorem [eq. (2.103b)] for g'(t), given that: = n 1 6arrow_forward
- 8.24 In the circuit of Fig. P8.24, is(t) = 0.2sin105t A,R = 20 W, L = 0.1 mH, and C = 2 μF. Show that the sum ofthe complex powers for the three passive elements is equal to thecomplex power of the source.arrow_forward3. VEB (on) 0.7 V, VEC (sat) = 0.2 V, and ẞ = 150. RB = 50 kQ, Rc = 2 kQ, and Vcc = 5 V. a) Find the range of V₁ for the cut-off. Forward active, and saturation regions. (20 points) b) Draw the voltage transfer characteristic (VTC) graph. (10 points) Vcc VEB V₁ RB www 。 Vo Rc Figure 3arrow_forward2-1) Lathi & Ding prob. 2.5-2 For the signals y(t) and x(t) shown below, find the component of the form y(t) contained in x(t). In other words, find the optimum value of c in the approximation x(t) = cy(t) so that the error signal energy is minimum. Also compute the error signal energy. y(t) x(t) 0 1 0 1arrow_forward
- 1. Is1 = 2ls2 = 4 × 10-16 A, B₁ = ẞ2 = 100, and R₁ = 5 kQ. Find the VB such that lx = 1 mA. (30 points) R1 ww Q2 + VB Figure 1arrow_forward2-2) Lathi & Ding prob. 2.6-1 2.6-1 Find the correlation coefficient p between of signal x(t) and each of the four pulses g1(1), 82(1), 83(1), and g4(f) shown in Fig. P2.6-1. To provide maximum margin against the noise along the transmission path, which pair of pulses would you select for a binary communication? Figure P.2.6-1 x(f) (a) 8(1) (b) 82(1) (c) 1 1 sin 2πt sin 4πt -sin 2 0 0.707 83(1) 0 1 (d) 0 M P 0.707 84(1) (e) 0 0.5 -0.707arrow_forward2. Determine the operation point and the small-signal model of Q₁ for each of the circuits shown in Fig. 2. Assume Is = 8 × 10-16 A, B = 100 and VA = ∞. a) 20 points b) 20 points 0.8 V RC 50 Ω + Vcc = 2.5 V 4A" Figure 2-a Rc1kQ + Vcc = 2.5 V Figure 2-barrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)