![Microelectronics: Circuit Analysis and Design](https://www.bartleby.com/isbn_cover_images/9780073380643/9780073380643_largeCoverImage.gif)
Microelectronics: Circuit Analysis and Design
4th Edition
ISBN: 9780073380643
Author: Donald A. Neamen
Publisher: McGraw-Hill Companies, The
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4, Problem 4.13TYU
To determine
The value of smallsignal voltage gain
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Find Eigenvalues and Eigenvectors for the following matrices:
[5 -6 1
A = 1
1
0
3
0
1
Use Gauss-Jordan Elimination method to solve the following system:
4x1+5x2 + x3 = 2
x1-2x2-3x3 = 7
3x1 x2 2x3 = 1.
-
3. As the audio frequency of Fig. 11-7 goes down, what components of Fig.
12-4 must be modified for normal operation?
OD
C₂ 100
HF
R₁ 300
Re 300
ww
100A
R
8
Voc
Rz
10k
reset
output 3
R7
8
Voc
3
reset
output
Z
discharge
VR₁
5k
2
trigger
2 trigger
7
discharge
R 3
1k
5
control
voltage
threshold 6
5 control
voltage
6
threshold
GND
Rs
2k
C.
C.
100
GND
Uz LM555 1
Ce
0.01
U, LM555
0.01
8.01.4
PRO
Fig. 11-7
Audio lutput
Pulse width modulator
R4 1k
ww
C7
Re 1k
ww
R7 100
VR
50k
10μ
Ra
R10
C₁.
R1
3.9k
3.9k
0.14 100k
TO
w
Rs 51
82
3
H
10
Carrier
U₁
Ca
Input
A741
2.2
Us
MC1496
PWM signal
input
R2
0.1100k
Uz
A741
41
Cs
1
Re
10k
VR2
50k
VR3
100k
14
12
C3.
3% +
Ce
0.1
10μ
5
1A
HH
C
+12V
0.1
O PWM
Output
C
0.02-
R
100k +12 V
Demodulated
output
6
Ca
0.33
w
R
10k
R12
100k
ww 31
о
+
4A741
-12 V
Fig. 12-4 PWM demodulator
C
1500p
Chapter 4 Solutions
Microelectronics: Circuit Analysis and Design
Ch. 4 - Prob. 4.1EPCh. 4 - For the circuit shown in Figure 4.1, VDD=3.3V and...Ch. 4 - Prob. 4.1TYUCh. 4 - For the circuit shown in Figure 4.1, VDD=3.3V and...Ch. 4 - For the circuit in Figure 4.1, the circuit and...Ch. 4 - The parameters for the circuit in Figure 4.8 are...Ch. 4 - A transistor has the same parameters as those...Ch. 4 - The parameters of the circuit shown in Figure 4.14...Ch. 4 - Consider the circuit shown in Figure 4.14. Assume...Ch. 4 - For the circuit shown in Figure 4.19, the...
Ch. 4 - The commonsource amplifier in Figure 4.23 has...Ch. 4 - Consider the commonsource amplifier in Figure 4.24...Ch. 4 - The parameters of the transistor shown in Figure...Ch. 4 - The sourcefollower circuit in Figure 4.26 has...Ch. 4 - The circuit and transistor parameters for the...Ch. 4 - Consider the circuit shown in Figure 4.28 with...Ch. 4 - Prob. 4.8TYUCh. 4 - The transistor in the sourcefollower circuit shown...Ch. 4 - Consider the circuit shown in Figure 4.35 with...Ch. 4 - For the circuit shown in Figure 4.32, the circuit...Ch. 4 - The bias voltage for the enhancementload amplifier...Ch. 4 - Assume the depletionload amplifier in Figure...Ch. 4 - For the circuit shown in Figure 4.45(a), assume...Ch. 4 - The transconductance gm of the transistor in the...Ch. 4 - The transconductance gm of the transistor in the...Ch. 4 - For the enhancement load amplifier shown in Figure...Ch. 4 - For the cascade circuit shown in Figure 4.49, the...Ch. 4 - The transistor parameters of the NMOS cascode...Ch. 4 - The transistor parameters of the circuit in Figure...Ch. 4 - Reconsider the sourcefollower circuit shown in...Ch. 4 - Prob. 4.13TYUCh. 4 - For the circuit shown in Figure 4.59, the...Ch. 4 - Discuss, using the concept of a load line, how a...Ch. 4 - How does the transistor widthtolength ratio affect...Ch. 4 - Discuss the physical meaning of the smallsignal...Ch. 4 - Prob. 4RQCh. 4 - Prob. 5RQCh. 4 - Discuss the general conditions under which a...Ch. 4 - Why, in general, is the magnitude of the voltage...Ch. 4 - What are the changes in dc and ac characteristics...Ch. 4 - Sketch a simple sourcefollower amplifier circuit...Ch. 4 - Sketch a simple commongate amplifier circuit and...Ch. 4 - Prob. 11RQCh. 4 - Prob. 12RQCh. 4 - State the advantage of using transistors in place...Ch. 4 - Prob. 14RQCh. 4 - An NMOS transistor has parameters VTN=0.4V ,...Ch. 4 - A PMOS transistor has parameters VTP=0.6V ,...Ch. 4 - An NMOS transistor is biased in the saturation...Ch. 4 - The minimum value of smallsignal resistance of a...Ch. 4 - An nchannel MOSFET is biased in the saturation...Ch. 4 - The value of for a MOSFET is 0.02V1 . (a) What is...Ch. 4 - Prob. 4.7PCh. 4 - The parameters of the circuit in Figure 4.1 are...Ch. 4 - The circuit shown in Figure 4.1 has parameters...Ch. 4 - For the circuit shown in Figure 4.1, the...Ch. 4 - In our analyses, we assumed the smallsignal...Ch. 4 - Using the results of Problem 4.11, find the peak...Ch. 4 - Consider the circuit in Figure 4.14 in the text....Ch. 4 - A commonsource amplifier, such as shown in Figure...Ch. 4 - For the NMOS commonsource amplifier in Figure...Ch. 4 - The parameters of the circuit shown in Figure...Ch. 4 - Repeat Problem 4.15 if the source resistor is...Ch. 4 - The ac equivalent circuit of a commonsource...Ch. 4 - Consider the ac equivalent circuit shown in Figure...Ch. 4 - The transistor in the commonsource amplifier in...Ch. 4 - The parameters of the MOSFET in the circuit shown...Ch. 4 - For the commonsource amplifier in Figure P4.22,...Ch. 4 - The transistor in the commonsource circuit in...Ch. 4 - Prob. 4.24PCh. 4 - For the commonsource circuit in Figure P4.24, the...Ch. 4 - Design the common-source circuit in Figure P4.26...Ch. 4 - For the commonsource amplifier shown in Figure...Ch. 4 - For the circuit shown in Figure P4.28, the...Ch. 4 - Design a commonsource amplifier, such as that in...Ch. 4 - The smallsignal parameters of an enhancementmode...Ch. 4 - The opencircuit (RL=) voltage gain of the ac...Ch. 4 - Consider the sourcefollower circuit in Figure...Ch. 4 - The source follower amplifier in Figure P4.33 is...Ch. 4 - Consider the circuit in Figure P4.34. The...Ch. 4 - The quiescent power dissipation in the circuit in...Ch. 4 - The parameters of the circuit in Figure P4.36 are...Ch. 4 - Consider the source follower circuit in Figure...Ch. 4 - For the sourcefollower circuit shown in Figure...Ch. 4 - In the sourcefollower circuit in Figure P4.39 with...Ch. 4 - For the circuit in Figure P4.39, RS=1k and the...Ch. 4 - Prob. D4.41PCh. 4 - The current source in the sourcefollower circuit...Ch. 4 - Consider the sourcefollower circuit shown in...Ch. 4 - Prob. 4.44PCh. 4 - Figure P4.45 is the ac equivalent circuit of a...Ch. 4 - The transistor in the commongate circuit in Figure...Ch. 4 - The smallsignal parameters of the NMOS transistor...Ch. 4 - For the commongate circuit in Figure P4.48, the...Ch. 4 - Consider the PMOS commongate circuit in Figure...Ch. 4 - The transistor parameters of the NMOS device in...Ch. 4 - The parameters of the circuit shown in Figure 4.32...Ch. 4 - For the commongate amplifier in Figure 4.35 in the...Ch. 4 - Consider the NMOS amplifier with saturated load in...Ch. 4 - For the NMOS amplifier with depletion load in...Ch. 4 - Consider a saturated load device in which the gate...Ch. 4 - The parameters of the transistors in the circuit...Ch. 4 - A sourcefollower circuit with a saturated load is...Ch. 4 - For the sourcefollower circuit with a saturated...Ch. 4 - The transistor parameters for the commonsource...Ch. 4 - Consider the circuit in Figure P4.60. The...Ch. 4 - The ac equivalent circuit of a CMOS commonsource...Ch. 4 - Consider the ac equivalent circuit of a CMOS...Ch. 4 - The parameters of the transistors in the circuit...Ch. 4 - Consider the sourcefollower circuit in Figure...Ch. 4 - Figure P4.65 shows a commongate amplifier. The...Ch. 4 - The ac equivalent circuit of a CMOS commongate...Ch. 4 - The circuit in Figure P4.67 is a simplified ac...Ch. 4 - Prob. 4.68PCh. 4 - The transistor parameters in the circuit in Figure...Ch. 4 - Consider the circuit shown in Figure P4.70. The...Ch. 4 - For the circuit in Figure P4.71, the transistor...Ch. 4 - For the cascode circuit in Figure 4.51 in the...Ch. 4 - The supply voltages to the cascode circuit in...Ch. 4 - Consider the JFET amplifier in Figure 4.53 with...Ch. 4 - For the JFET amplifier in Figure P4.75, the...Ch. 4 - The parameters of the transistor in the JFET...Ch. 4 - Consider the sourcefollower WET amplifier in...Ch. 4 - For the pchannel JFET sourcefollower circuit in...Ch. 4 - The pchannel JFET commonsource amplifier in Figure...Ch. 4 - Prob. 4.82CSPCh. 4 - A discrete commonsource circuit with the...Ch. 4 - Consider the commongate amplifier shown in Figure...Ch. 4 - A sourcefollower amplifier with the configuration...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- DUC 1. In Fig. 12-4, what are the functions of the VR1 and VR2? 2. In Fig. 12-4, what is the function of the VR3? VR₁ 50k C₁ R1 0.1 100k Carrier Input U₁ A741 PWM signal input R41k www Re 1k w C7 ± 10μT R7 100 ww =L H C4 2.2 H W82 Rs 51 3 10 U3 MC1496 C2 R2 U2 A741 22 0.1 100k VR2 50k VR3 100kr 14 C3 10μ 1k 0.1 4 5 6 12 m Re 10k R9 R102 3.9k 3.9k HHI C10 0.1 -0 +12V C11 R 0.02 100k +12 V Demodulated output C R11 R12 A741 0.33 10k 100k -12 V Ca 1μ C12 1500p PRODUC Fig. 12-4 PWM demodulator PRODUCTSarrow_forward10.37 Use mesh analysis to find currents I₁, I2, and I3 in the circuit of Fig. 10.82. ML 120-90° V 120 -30° V Figure 10.82 For Prob. 10.37. N N Z=80-135arrow_forward3. Find the phasor current I。 in the circuit shown below. Be aware of the direction markings. (15 pts) 1052 I 5057 ①520 Amps 2012 j5052arrow_forward
- 10.93 Figure 10.135 shows a Colpitts oscillator. Show that the ed oscillation frequency is 1 fo= 2π √√LCT where CTC₁C2/(C₁ + C₂). Assume R; >>> R₁ + Rf ww Vo L m C₂ C₁ 5 Xci Figure 10.135 A Colpitts oscillator; for Prob. 10.93. (Hint: Set the imaginary part of the impedance in the feedback circuit equal to zero.)arrow_forwardDetermine (a) the average and (b) rms values of the periodiccurrent waveform shown in Fig. P8.3.arrow_forward10.68 Find the Thevenin equivalent at terminals a-b in the circuit of Fig. 10.111. ML 6 sin 10t V 492 Figure 10.111 For Prob. 10.68. 5913 + 410 + -2 F 20 1H Vo obarrow_forward
- 10.79 For the op amp circuit in Fig. 10.122, obtain Vo. 5 cos 10³t V(+ Figure 10.122 For Prob. 10.79. 10 ΚΩ www 20 ΚΩ www 0.1 µF 40 ΚΩ 0.2 μFarrow_forward10.19 Obtain V, in Fig. 10.68 using nodal analysis. # ML ΖΩ j20 m 12/0° V 492 (+ ww www ' < ་ + V -j4 0.2V Figure 10.68 For Prob. 10.19.arrow_forward10.47 Determine i, in the circuit of Fig. 10.92, using the superposition principle. ML 10 sin(t -30°) V 1Ω www Figure 10.92 For Prob. 10.47. 96 F 202 www 24 V +) 2 H m io 2 cos 3t www 42arrow_forward
- 10.53 Use the concept of source transformation to find V, in the circuit of Fig. 10.97. 492 www -j30 j40 m + 20/0° V(+ j20 ΖΩ www -120 V ° Figure 10.97 For Prob. 10.53.arrow_forward2. Given you have a real valued signal with the following single sided baseband signal spectrum: ↑ ❘m(f)| A f=0 500 750 Sketch the frequency domain of |X(f)| given: a. x1(t) =m(t)cos(2**5000*) b. x2(t)=m(t)cos(2**600) Frequency (Hz)arrow_forwardwhat is deference between full Adder and Half?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,