
Concept explainers
Interpretation:
Evidence to show that the structural formula may not always be useful in predicting smell is to be explained.
Concept introduction:
Structural formula of a molecule is very useful as it gives valuable information such as the functional groups present in the molecule. By knowing the functional groups one can predict the molecular properties of the compound such as smell but this information is not enough to predict the distinct smell of a compound.

Answer to Problem 7E
The three alcohols such as geraniol, menthol and fencholsmell differently even though they have the same functional group(-OH). Geraniol smells like rose, menthol has smell of mint and fenchol smells like pine. Their structural formula only reveals that the functional group is hydroxyl. So it is evident that there is something else besides the functional group which determines the smell of a compound.
For example, isopentylacetate and ethyl butyrate have sweet smell due to presence of ester group but looking at their structural formula one cannot predict their distinct smell. Isopentylacetate has smell of bananas and ethy butyrate has smell of pineapple.
Explanation of Solution
Molecules, such as geraniol (C 10 H 18 O ), menthol (C 10 H 20 O ) and fenchol (C 10 H 18 O ) have same functional group, -OH. Their structural formulas are important but they are not sufficient to predict the distinct smell of each compound. There are many ester molecules which have distinct smell. Their structural formula only tells about the functional group (ester) present in them. For example isopentylacetate and ethyl butyrate have sweet smell due to presence of ester group but looking at their structure one cannot judge their distinct smell. It is the three dimensional structure of the molecule which helps in predicting the correct smell of the compound. Isopentylacetate has smell of bananas and ethylbutyrate has smell of pineapple.
The structural formula of a molecule shows that the molecule is flat with the carbon atoms arranged in line whereas the ball and stick model shows the three dimensional structure of the molecule. This helps in better understanding the shape of the molecule. Differently shaped molecules have different smell even if they have the same functional groups.
Chapter U2 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Biology: Life on Earth with Physiology (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Applications and Investigations in Earth Science (9th Edition)
Microbiology: An Introduction
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Cosmic Perspective Fundamentals
- An einstein is the amount of energy needed to dissociate 1 mole of a substance. If we have 0.58 moles, do we need 0.58 einsteins to dissociate that substance?arrow_forwardIf the energy absorbed per mole of gas is 480 kJ mol-1, indicate the number of Einsteins per mole.Data: Energy of each photon: 0.7835x10-18 J.arrow_forwardIf the energy absorbed per mole of gas is 480 kJ mol-1, indicate the number of Einsteins per mole.arrow_forward
- The quantum yield of the photochemical decay of HI is 2. Calculating the moles of HI per kJ of radiant energy can be decayed knowing that the energy absorbed per mole of photons is 490 kJ.arrow_forwardThe quantum yield of the photochemical decay of HI is 2. Calculate the number of Einsteins absorbed per mole knowing that the energy absorbed per mole of photons is 490 kJ.arrow_forwardThe quantum yield of the photochemical decay of HI is 2. How many moles of HI per kJ of radiant energy can be decayed knowing that the energy absorbed per mole of photons is 490 kJ.arrow_forward
- If the energy absorbed per mole of photons is 450 kJ, the number of Einsteins absorbed per 1 mole.arrow_forwardWhen propionic aldehyde in vapor form at 200 mmHg and 30°C is irradiated with radiation of wavelength 302 nm, the quantum yield with respect to the formation of CO is 0.54. If the intensity of the incident radiation is 1.5x10-3 W, find the rate of formation of CO.arrow_forwardDraw mechanismarrow_forward
- Does Avogadro's number have units?arrow_forwardExplain why the total E in an Einstein depends on the frequency or wavelength of the light.arrow_forwardIf the dissociation energy of one mole of O2 is 5.17 eV, determine the wavelength that must be used to dissociate it with electromagnetic radiation. Indicate how many Einstein's of this radiation are needed to dissociate 1 liter of O2 at 25°C and 1 atm of pressure.Data: 1 eV = 96485 kJ mol-1; R = 0.082 atm L K-1; c = 2.998x108 m s-1; h = 6.626x10-34 J s; NA = 6.022x 1023 mol-1arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





