
Concept explainers
Interpretation:
Evidence to show that the structural formula may not always be useful in predicting smell is to be explained.
Concept introduction:
Structural formula of a molecule is very useful as it gives valuable information such as the

Answer to Problem 7E
The three alcohols such as geraniol, menthol and fencholsmell differently even though they have the same functional group(-OH). Geraniol smells like rose, menthol has smell of mint and fenchol smells like pine. Their structural formula only reveals that the functional group is hydroxyl. So it is evident that there is something else besides the functional group which determines the smell of a compound.
For example, isopentylacetate and ethyl butyrate have sweet smell due to presence of ester group but looking at their structural formula one cannot predict their distinct smell. Isopentylacetate has smell of bananas and ethy butyrate has smell of pineapple.
Explanation of Solution
Molecules, such as geraniol (C 10 H 18 O ), menthol (C 10 H 20 O ) and fenchol (C 10 H 18 O ) have same functional group, -OH. Their structural formulas are important but they are not sufficient to predict the distinct smell of each compound. There are many ester molecules which have distinct smell. Their structural formula only tells about the functional group (ester) present in them. For example isopentylacetate and ethyl butyrate have sweet smell due to presence of ester group but looking at their structure one cannot judge their distinct smell. It is the three dimensional structure of the molecule which helps in predicting the correct smell of the compound. Isopentylacetate has smell of bananas and ethylbutyrate has smell of pineapple.
The structural formula of a molecule shows that the molecule is flat with the carbon atoms arranged in line whereas the ball and stick model shows the three dimensional structure of the molecule. This helps in better understanding the shape of the molecule. Differently shaped molecules have different smell even if they have the same functional groups.
Chapter U2 Solutions
Living By Chemistry: First Edition Textbook
Additional Science Textbook Solutions
Biology: Life on Earth with Physiology (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Applications and Investigations in Earth Science (9th Edition)
Microbiology: An Introduction
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Cosmic Perspective Fundamentals
- Steps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forwardSteps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forwardSteps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forward
- Can you please help me and explain how I would find a mechanism consistent, using my results. Help with number 5.arrow_forwardThe conversion of (CH3)3CI to (CH3)2C=CH2 can occur by either a one-step or a two-step mechanism, as shown in Equations [1] and [2]. [1] + I + H₂Ö: :OH [2] q slow :OH + I¯ H₂Ö: a. What rate equation would be observed for the mechanism in Equation [1]? b. What rate equation would be observed for the mechanism in Equation [2]? c. What is the order of each rate equation (i.e., first, second, and so forth)? d. How can these rate equations be used to show which mechanism is the right one for this reaction? e. Assume Equation [1] represents an endothermic reaction and draw an energy diagram for the reaction. Label the axes, reactants, products, Ea, and AH°. Draw the structure for the transition state. f. Assume Equation [2] represents an endothermic reaction and that the product of the rate-determining step is higher in energy than the reactants or products. Draw an energy diagram for this two-step reaction. Label the axes, reactants and products for each step, and the Ea and AH° for each…arrow_forwardSteps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forward
- Steps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forwardSteps and explanations. Also provide, if possible, ways to adress this kind of problems in general.arrow_forwardFor a complex reaction with the rate equation v = k1[A] + k2[A]2, we can say(A) that it is of order 1.(B) that it is of order 1.5.(C) that it is of order 2.(D) that for certain values of [A] it can behave as if it were of order 1, and for other values as if it were of order 2.arrow_forward
- a. Draw a complete arrow pushing mechanism for the following. Is this the thermodynamic or the kinetic product? Use your mechanism to explain your choice. Draw all the resonance. HBr Brarrow_forwardWhich, if any, of the substances had resonance structures? How many resonance structures did each substance have from the following list: CCl4 H2O CO2 C2H4 NH3 SF6 ICl5arrow_forwardSteps and explanation pleasearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





