Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.62P
To determine
The critical radius. The per unit length heat transfer for the given bare and the Bakelite coated rod. Thickness of the Bakelite needed to reduce the heat transfer of the bare rod by 25%.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. A mass of 0.20 kg of metal having a temperature of 100 deg. C is plunged into 0.04
kg of water at 20 deg. C The temperature of the water and metal becomes 48 deg.
C. The latent heat of ice at 0 eg. C is 335 kJ/kg-K and the specific heat capacity of
water is 4.19 kJ/kg-K. Assuming no heat loss to the surroundings, determine the
specific heat capacity of the metal in kJ/kg-K
How much ice (by mass) at a temperature of -19.9 degrees Celsius must be added to 325g of liquid water at a temperature of 60.1 degrees Celsius in order for the final temperature of both to reach 21 degrees Celsius.
c of ice=2100 J/kg/C
c of water=4190 J/kg/C
Latent heat of fusion of water=3.34E5 J/kg/C
a. .115kg
b. 12kg
c. 5 lbs
d. .191kg
NOTE: Complete solution and show the derivation/cancellation of units.
N m
An ideal gas has a gas constant of 319.8
kg K
and a gas ratio of 1.26. Calculate
the heat rejected per kg of gas:
A. when the gas is contained in a rigid vessel at 3 bar and 315°C and then
cooled until the pressure falls to 1.5 bar.
B. when the gas enters a pipeline at 280°C and flows steadily at constant
pressure to the end of the pipe where the temperature is 20°C.
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Instructions: Please refer at the 2nd photo below for the table.arrow_forwardA 50-kg iron block at 80°C is dropped into an insulated tank that contains 500 kg of liquid water at 25°C. Determine the final temperature when the thermal equilibrium is reached, in °C. (Specific. heat of water = 4.18 kJ/kg.°C) 55.2 25.6 24.8arrow_forwardAn unknown material, m, = 0.21 kg, at a temperature of T, = 76 degrees C is added to a Dewer (an insulated container) which contains m2 = 1.1 kg of water at T2 = 21 degrees C. Water has a specific heat of c,,= 4186 J/(kg·K). After the system comes to equilibrium the final temperature is T= 30.5 degrees C. Input an expression for the specific heat of the unknown material. Cu What is the specific heat in J/(kg-K)?arrow_forward
- PLEASE ANSWER QUICKLY WITHIN 1 HOUR THANK YOUarrow_forwardCHAPTER 3. Volumetric Properties of Pure Fluids 24 3.42. For methyl chloride at 100°C the second and third virial coefficients are: B -242.5 cm3.mol -1 C= 25,200 cmo.mol- Calculate the work of mechanically reversible, isothermal compression of 1 mol of methyl chloride from 1 bar to 55 bar at 100°C. Base calculations on the following forms of the virial equation: tot В С + V 32(a) ताी deal z=1+tv V2 (b) Z 1 B'P + C'P2 E0.0- Grst 130 С -В2 В and C'= В'" where ro boap A BEE 11 (RT)2 RT faups nisinos Why don't both equations give exactly the same result? HOS & BRIGE als A C 1 43 44arrow_forward3.2. Heat and Work 0.2 kg of argon (mon-atomic ideal gas, R = 0.208 kJ/kgK ), initially at 250K, are confined in an isochoric system of 0.15 m^3 volume, and 2.5 kg of xenon (mon-atomic ideal gas, R = 0.063 kJ/kgK ), initially at 420K, are confined in an isobaric piston-cylinder system at 1.8 bar. Both systems are brought into thermal contact and equilibrate their temperatures with no heat loss to the outside. What is the final temperatures, pressures and volumes of both gases, the work done by both systems, and the amount of heat transferred between the two systems and the total generation of entropy? (Sgen= ∫ Sgen dt ) and s=Cv =3/2R, Cp =5/2Rarrow_forward
- Nm 2. An ideal gas has a gas constant of 319.8 - and a gas ratio of 1.26. Calculate kg K the heat rejected per kg of gas: A. when the gas is contained in a rigid vessel at 3 bar and 315°C and then cooled until the pressure falls to 1.5 bar. B. when the gas enters a pipeline at 280°C and flows steadily at constant pressure to the end of the pipe where the temperature is 20°C.arrow_forward4. The air temperature measurement results obtained by the dry ball temperature 37 ° C and the wet bulb temperature 27.5 ° C. Using a Psychrometric chart, determine the properties of the air as follows: a. RH: Answer % b. Water content: Answer kg of water / kg of air c. Specific volume: Answer m3 / kg d. Enthapi: Answer kJ / kg e. Condensation temperature: Answer ° C If the air is in 162 m3 space, determine, f. Air weight (dry air and moisture): Answer kg g. The amount of water content in the room: Answer kgarrow_forwardHeat and Work 0.2 kg of argon (mon-atomic ideal gas, R = 0.208 kJ/kgK ), initially at 250K, are confined in an isochoric system of 0.15 m^3 volume, and 2.5 kg of xenon (mon-atomic ideal gas, R = 0.063 kJ/kgK ), initially at 420K, are confined in an isobaric piston-cylinder system at 1.8 bar. Both systems are brought into thermal contact and equilibrate their temperatures with no heat loss to the outside. What is the final temperatures, pressures and volumes of both gases, the work done by both systems, and the amount of heat transferred between the two systems and the total generation of entropy? (Sgen= ∫ ?̇gen ?t ) and s=?? =3/2?, ?? =5/2?arrow_forward
- 4. One mole of helium gas is injected into each side of a slidable, airtight lead piston that separates two chambers of a sealed cylinder. The outside of the cylinder is insulated everywhere except where noted below. The cylinder and piston have lengths and cross- sectional area labeled in the diagram. The helium in the left chamber is heated from outside at a rate of 450 W, and the helium in the other chamber expels heat into a cool region. The full system eventually comes to steady-state. When it reaches steady state, the force needed to hold on the end cap is measured to be 18,000 N, and the piston has slid to an equilibrium point that is a distance à from the left end. force holding cap = 18,000N pressure. cross-sectional area of cylinder = 0.02m² x = ? Imol He do dt = +450W 45cm 15cm lead piston a. Find the temperature difference of the two chambers. b. Find the distance x. dQ dt Assume helium behaves as an ideal gas, and that heat transfer through the container walls is…arrow_forwardAnswer this as fast as you can please I will give good ratingarrow_forward1. One mole of a monatomic ideal gas is held at the start at a pressure of 11 atm and 1 L. The gas undergoes isothermal expansion to 4 L followed by adiabatic expansion to 6 L. The gas is then isothermally compressed to 1.70 atm and adiabatically compressed back to 1 L. STATE P (atm) v (L) т (к) 1 11 1 134 2 2.75 4 134 3 1.4 102.4 4 1.7 4.94 102.4 b. Complete the table below and show your work. Process Q (kJ) W (kJ) Δυ (kJ) дн (k) AS (J/K) 10 2 2 0 3 3 0 4 4 0 1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license