Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.71P
To determine
Thickness of urethane foam needed to reduce the exterior temperature and percentage reduction in heat rate by using the insulation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Show you complete solution.
In the figure below, it is known that the thermal conductivity of k1 = 0.06 W/mK, k3 = 0.04 W/mK, and k4 = 0.12 W/mK. The thickness of the layers is L1 = 1.50 cm, L3 = 2.8 cm, and L4 = 3.50 cm. Known temperatures T1 = 30°C, T12 = 25°C, and T4 = -10°C. Energy transfer through walls is constant. How much is T34?
Two rods are horizontally fixed to the rigid walls so that there is a gap of 0.008
inch between them when the temperature is 60°F. The following are the properties of
the rods:
Property
Rod 1
Rod 2
Diameter
1.25 inches
1.25 in
Length
3.5 inches
7.5
inches
Thermal Coefficient of 9.4 x10-6 /OF
13 x10-6 /°F
Expansion
Modulus of Elasticity
10 x 103 ksi
18 x 103 ksi
a. What is the average stress in the rods if the temperature is increased to 240°F.
b. What is the total deformation of the first rod?
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Το TL K₁, A, L₁ x=0 Та K2, A, L₂ Tb K₁, A, L₁ L "Create a thermal resistance diagram from a to L and formulate an equation to calculate K2 in terms of the other variables."arrow_forward[2] An array of electronic chips is mounted within a sealed rectangular enclosure, and cooling is implemented by attaching an aluminum heat sink (k = 180 W/m K). The base of the heat sink has dimensions of w1 = W2 = 100 mm, while the 6 fins are of thickness t = 10 mm and pitch S = 18 mm. The fin length is Lr = 50 mm, and the base of the heat sink has a thickness of Lb = 10 mm. L -Chips Water u T Electronic package, P elec If cooling is implemented by water flow through the heat sink, with uo = 3 m/s and To = temperature Tb of the heat sink when power dissipation by the chips is Pelec = 1800 W? The average convection coefficient for surfaces of the fins and the exposed base may be estimated by assuming parallel flow over a flat plate. Properties of the water may be approximated as k = 0.62 W/m-K, p = 995 kg/m3, Cp = 4178 J/kg-K, v = 7.73 x 10-7 m2/s, and Pr = 5.2. 17°C, what is the base a.) Base temperature. А. 37.8°C B. 43.9°C С. 31.4°С D. 46.2°Carrow_forwardA 1.0-mm-diameter wire is maintained at a temperature of 400 •C and exposed to a convection environment at 40 •C with h = 120 W/m2 • -C. Calculate the thermal conductivity in BTU/hr-ft-deg F that will just cause an insulation thickness of 0.2 mm to produce a "critical radius."arrow_forward
- At a temperature of 21.4°C the hole in a steel plate has an area of 8.80 x 10- m2. You heat the plate until the area of the hole increases to 8.97 x 10- m2, which allows a steel rod to just slip through this hole. What is the final temperature of the plate? The coefficient of linear expansion of steel is 12 × 10-0/°C.arrow_forward1arrow_forwardA large concrete slab 1 m thick has one dimensional temperature distribution: T = 4 – 10x + 20x² + 10x³ Where T is temperature and x is distance from one face towards other face of wall. If the slab material has thermal diffusivity of 2 × 10-3 m²/hr, what is the rate of change of temperature at the other face of the wall?arrow_forward
- The inner diameter of a pipe made of %1 C steel used in the drying machine of a textile factory is D1 = 160 mm and the thread diameter is D₂= 170 mm. The pipe is insulated with 25 mm thick glass wool. The heat transfer coefficient between the air and the pipe surface at 90 °C temperature inside the pipe is 80 W/m²K. The temperature of the ambient air outside the insulation is 20 °C and the air comes perpendicular to the cat wool surface at a speed of 10 m/s. Find the total heat transfer coefficient according to the inside diameter of the pipe. Calculate the heat transfer per unit length of pipe per unit time ?arrow_forwardSaved Help Save & Exit A 2-kW resistance heater wire with thermal conductivity of k= 70 W/m-K, a diameter of D= 4 mm, and a length of L = 0.9 m is used to boil water. If the outer surface temperature of the resistance wire is Ts= 230°C, determine the temperature at the center of the wire. (Round your answer to a single decimal place.) 230 C -D→ es Resistance heater The temperature at the center of the wire is °C 18°C Clear ^ 4 ENGarrow_forwardQUESTION 2 The wall of a refrigerated truck consists of 1.5mm sheet steel outer surface, 10mm plywood at the inner surface and 20mm of glass wool in between. The inside temperature is -15°C and outside temperature is 240C. Take the thermal conductivities of the materials as follows: - 0,052W/mK = 23,2W/mK k for glass-wool = 0,14W/mK k for plywood k for steel %3D %3D %3D Calculate: 2.1. the rate of heat flow per unit area; 2.2. the interface temperature. If the glass-wool is replaced by a 5mm cork board with a thermal conductivity of 0.043W/mK; 2.3. What percentage change in heat flow is obtained? 2.4. What must be the thickness of the cork board be, to achieve the same heat flow as in (2.1.).arrow_forward
- 2. In an experiment to measure the thermal conductivity of beef was formed into a square section block 5 cm x 5 cm and 1 cm thick. The edges of the block were insulated, and heat was supplied continuously to one face of the block at a rate of 0.80 W. The temperatures of each face were measured with thermocouples and found to be 28.5°C and 23.3°C, respectively. What is the thermal conductivity of beef?arrow_forwardA cubical piece of heat-shield-tile from the space shuttle measures 0.17 m on a side and has a thermal conductivity of 0.065 J/(s·m·C°). The outer surface of the tile is heated to a temperature of 1050°C, while the inner surface is maintained at a temperature of 23°C. (a) How much heat flows from the outer to the inner surface of the tile in 3.0 minutes? (b) If this amount of heat were transferred to 1.5 liters (1.5 kg) of liquid water, by how many Celsius degrees would the temperature of the water rise?arrow_forwardthick-walled tube of stainless steel [18% Cr, 8% Ni, k = 19 W/m · ◦C] with 2-cm inner diameter (ID) and 4-cm outer diameter (OD) is covered with a 3-cm layer of asbestos insulation [k = 0.2 W/m · ◦C]. If the inside wall temperature of the pipe is maintained at 600◦C, calculate he heat loss per meter of length. Also calculate the tube–insulation interface temperature.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
composite-materials; Author: Tonya Coffey;https://www.youtube.com/watch?v=Vu6ik-bcKf4;License: Standard youtube license