Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.24P
(a)
To determine
The thermal resistance for each layer.
(b)
To determine
The outer surface temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Sepleniber 02
Heat is generated in a homogeneous spherical piece of radioactive material (2D - 8 cm)
at rate of 71.8 MW/m and is dissipated to the environment. The center and surface
temperatures of the spheres are (491°C and 80°C) respectively, What is the thermal
conductivity of the radioactive material "W/m.K"?
A piece of beef steak 7 cm thick will be frozen in the freezer room -40 ° C. This product has a moisture content of 73%, a density of 970 kg / m³, and a thermal conductivity (frozen) of 1.1 W / (m K). Estimate the freezing time. using the Plank equation. This product has an initial freezing temperature of -1.75 ° C, and the movement of air in the freezing room gives a convective heat transfer coefficient of 15 W / (m² K).
t f = Answerhour.
Don’t use Heissler charts to answer this question
Heat sterilization of lumber, timbers, and pallets is used to kill insects to prevent their transfer between countries in international trade. This is analogous to food sterilization by heat. A typical requirement here is that the slowest heating point of any woodconfiguration be held at 56 °C for 30 minutes. Consider hot air heating of wooden boards that maintains their surface temperature at 70 °C. The boards are stacked outside and in the winter time they can be considered to be at 0 °Cwhen theyare brought in for heating. The thermal diffusivity of the wood is 9*10-8m2/s.
a.Calculate the time from the start of heating for a 2.5 cm thick board to reach a sterilization temperature of 56 °C at its slowest heating point
.b.Calculate the heating time when four such boards are stacked together.
c.Calculate the ratio of the two heating times (for a single board versus when they are stacked), and explain the ratio.
Note: You’re free to…
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.15 A thermocouple (0.8-mm-diameter wire) used to measure the temperature of the quiescent gas in a furnace gives a reading of . It is known, however, that the rate of radiant heat flow per meter length from the hotter furnace walls to the thermocouple wire is 1.1 W/m and the convection heat transfer coefficient between the wire and the gas is K. With this information, estimate the true gas temperature. State your assumptions and indicate the equations used.arrow_forwardAir at 40C flows over a long, 25-mm-diameter cylinder with an embedded electric heater. In a series of tests, measurements were made of the power per unit length, P’, required to maintain the cylinder surface temperature at 300C for different free stream velocities V of the air. The results are as follows: Determine the convection coefficient in W/(m2K) for each velocity.arrow_forwardAfter the sinking of RMS Titanic, US operated the International Ice patrol with the purpose of monitoring the presence and movements of icebergs in the Atlantic and Arctic oceans. Once, they observed a unique tabular iceberg in a form of a rectangle (250 km x 50 km x 300 m). The sun is the only source of heat and the ice absorbs a mean of 98 J/m2-s, 12.5 hrs per day. The exposed area for heating is 250 km x 50 km and the density is 920 kg/m3. What is the total mass of the iceberg? Express answer in kg and in scientific notation with two decimal places. To input: if the answer is 4.78x1025, input 4.78e25.arrow_forward
- After the sinking of RMS Titanic, US operated the International Ice patrol with the purpose of monitoring the presence and movements of icebergs in the Atlantic and Arctic oceans. Once, they observed a unique tabular iceberg in a form of a rectangle (250 km x 50 km x 300 m). The sun is the only source of heat and the ice absorbs a mean of 98 J/m2-s, 12.5 hrs per day. The exposed area for heating is 250 km x 50 km and the density is 920 kg/m3. Which of the following statements is/are correct based on the above description? Check all that apply. The heat involved are both latent and sensible heats. The mass of the iceberg can be determined from the given density and dimensions. The heat involved is latent heat only. The total amount of the heat absorbed by the ice has negative sign.arrow_forwardAfter the sinking of RMS Titanic, US operated the International Ice patrol with the purpose of monitoring the presence and movements of icebergs in the Atlantic and Arctic oceans. Once, they observed a unique tabular iceberg in a form of a rectangle (250 km x 50 km x 300 m). The sun is the only source of heat and the ice absorbs a mean of 98 J/m2-s, 12.5 hrs per day. The exposed area for heating is 250 km x 50 km and the density is 920 kg/m3. How much heat does the exposed heating area absorb per day? Express answer in J/day and in scientific notation with four decimal places. To input: if the answer is 4.7834x1025, input 4.7834e25.arrow_forwardAfter the sinking of RMS Titanic, US operated the International Ice patrol with the purpose of monitoring the presence and movements of icebergs in the Atlantic and Arctic oceans. Once, they observed a unique tabular iceberg in a form of a rectangle (250 km x 50 km x 300 m). The sun is the only source of heat and the ice absorbs a mean of 98 J/m2-s, 12.5 hrs per day. The exposed area for heating is 250 km x 50 km and the density is 920 kg/m3. The latent heat of fusion/melting of ice is 333.5 J/kg. A year has 365 days. How many years would it take to melt the iceberg solely by heat from the sun? Express answer in two decimal places. Hint: To get time, divide the heat of melting by the heat provided by the sun.arrow_forward
- After the sinking of RMS Titanic, US operated the International Ice patrol with the purpose of monitoring the presence and movements of icebergs in the Atlantic and Arctic oceans. Once, they observed a unique tabular iceberg in a form of a rectangle (250 km x 50 km x 300 m). The sun is the only source of heat and the ice absorbs a mean of 98 J/m2-s, 12.5 hrs per day. The exposed area for heating is 250 km x 50 km and the density is 920 kg/m3. Which of the following statements is/are correct based on the above description? Check all that apply. The heat involved is latent heat only. The mass of the iceberg can be determined from the given density and dimensions. The heat involved are both latent and sensible heats. The total amount of the heat absorbed by the ice has negative sign.arrow_forwardAfter the sinking of RMS Titanic, US operated the International Ice patrol with the purpose of monitoring the presence and movements of icebergs in the Atlantic and Arctic oceans. Once, they observed a unique tabular iceberg in a form of a rectangle (250 km x 50 km x 300 m). The sun is the only source of heat and the ice absorbs a mean of 98 J/m2-s, 12.5 hrs per day. The exposed area for heating is 250 km x 50 km and the density is 920 kg/m3. Which of the following statements is/are correct based on the above description? Check all that apply. The total amount of the heat absorbed by the ice has negative sign. The heat involved are both latent and sensible heats. The mass of the iceberg can be determined from the given density and dimensions. The heat involved is latent heat only.arrow_forwardAfter the sinking of RMS Titanic, US operated the International Ice patrol with the purpose of monitoring the presence and movements of icebergs in the Atlantic and Arctic oceans. Once, they observed a unique tabular iceberg in a form of a rectangle (250 km x 50 km x 300 m). The sun is the only source of heat and the ice absorbs a mean of 98 J/m2-s, 12.5 hrs per day. The exposed area for heating is 250 km x 50 km and the density is 920 kg/m3. What is the total mass of the iceberg? Express answer in kg and in scientific notation with two decimal places.arrow_forward
- W Determine the heat-transfer rate from an electronic chip whose surface temperature is 31ºC and has an exposed surface area of 2 cm². The temperature of the surrounding air is 22°C. The heat-transfer coefficient for this situation is h = 25 W) and U.S. Customary units (in Btu/h). m². K rate in W (No Response) W rate in Btu/h (No Response) Btu/h What is the R-factor (film resistance, in Km²/W) for this situation? (No Response) K. m²/w Express your answer in both SI units (inarrow_forwardLet's say a 3.0 gram copper wafer is dropped from a height of 50.0 meters. If 60% of the potential energy lost in the drop could be converted to thermal energy used to heat the copper from an initial temperature of 25 degrees celsius, what would the final temperature of the copper wafer? Would the answer be different if the wafer has a mass greater than 3 grams? Note: the specific heat of copper is 387 J/(kg*K). The temperature is between 25.8 and 26.0 degrees celsius, yes the bigger the mass the greater the energy. O The temperature is between 25.6 and 25.8 celsius, answer does not depend on mass. O The temperature is between 25.0 and 25.2 celsius, answer does not depend on mass. O The temperature is 25.5 and of course the more mass something has the greater energy will be needed to raise the temperature. The temperature is 26.2 and if the mass is doubled so will be the change in temperature. O The temperature is 25.9 degrees celsius and the answer does not depend on mass. O The…arrow_forwardPlease show all steps not Ai generated I need to understand the processarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license