Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.32P
(a)
To determine
The thermal resistance between the carbon nanotube and top surface of heated and sensible island.
(b)
To determine
The fraction of the total resistance between the heated and sensing islands due to the thermal contact resistance for different value of island separation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(3)
The thermal conductivity of helium at 400 K is 0.176 W m-! K-1. Knowing only
this datum, estimate the thermal conductivity of helium at 800 K. Compare your
estimate to the value obtained from the figure below.
06
as
02
01
co
CO.N A
HCI
Cl,
200
400
00
Temperature, K
1200
1400
600
What do you conclude about the equation that you used for your estimate?
Please answer question 1 please show me step by step.
Answer correctly and quickly as possible please.
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A plane wall of thickness 2L has internal heat sources whose strength varies according to qG=qocos(ax) Where qo is the heat generated per unit volume at the center of the wall (x=0) and a is a constant. If both sides of the wall are maintained at a constant temperature of Tw, derive an expression for the total heat loss from the wall per unit surface area.arrow_forward(Q4) A 4m x 6m wall consists of 4 glass windows of 2m x 1.5m dimensions. The wall has thickness of 0.13m and a thermal conductivity of 0.5 W/m.K, while the glass windows are 6 mm thick with a thermal conductivity of 1.228 W/m.K. The values of intemal and external surface conductance for the wall (including glass) are 7.8 W/m? K and 34.4 W/m².K, respectively. The intemal and extemal temperatures are 22° C and 42°C, respectively. Calculate the total heat transfer rate through the wall. What percentage of this heat transfer is through the windows?arrow_forwardAs shown in the sketh below, a steam pipe of 0.12-m inside diameter is insulated with a layer of calcium silicate. "2. Ta2} 1. Ta,1} Steam Insulation (a) If the insulation is 10 mm thick and its inner and outer surfaces are maintained at T, = 800 K and Ta = 490 K. respectively,. what is the rate of heat loss per unit length (q) of the pipe, in W/m? (b) Determine the rate of heat loss per unit length (d), in W/m, and outer surface temperature T,2, in K, for the steam pipe with the Inner surface temperature fixed at T = 800 K, inner radius = 0.06 m, and outer radius n = 0.18 m. The outer surface is exposed to an airflow (T 25°C) that maintains a convection coefficient of h = 25 W/m2-K and to large surroundings for which Tur = T, = 25°C. The surface emissivity of calcium silicate is approximately 0.8.arrow_forward
- Question 5: A copper bar 35 cm long, with square cross-section 2 cm x 2 cm is fitted with a resistive heater at one end, and a large heat sink at the other. The bar itself is ideally thermally lagged. (i) (ii) Sketch how you think the two thermometers would behave when the heater is switched on; (ii) Calculate the thermal conductivity if in the steady-state, T1=64.7 deg C and T2=40.0 deg C. Hint: rate of flow of heat = k*A*AT/X V=6 V, I=2.5A heater T1 25 cm T2 Heat sinkarrow_forwardA hollow square box is made from 1ft^2 sheets of a prototype insulating material that is 0.75 inches thick. A 120W electrical heater is placed inside the box. Over time thermocouples attached to the box show that the interior and exterior surfaces of one face have reached the constant temperatures of 150 degrees and 90 degrees. What is the thermal conductivity?arrow_forwardA brick wall, 500 mm thick and having a thermal conductivity of 0.75 W/(m K), measures 15 m long by 4 m high, and has a temperature difference between the inside and outside faces of 20 K. What is the rate of heat conductionarrow_forward
- The composite wall of a furnace consists of three different materials, two of which have known thermal conductivity (ka = 20 W/m°C and kc = 50 W/m°C) and thicknesses La = 0.30 m and Lb = 0.15 m. The third material (B) is between A and C, with a thickness of 0.15 m, but its thermal conductivity (kb) is unknown. Under steady-state operating conditions, measurements reveal a temperature of 20 °C on the external surface, 600 °C on the internal surface, and a furnace ambient temperature of 800 °C. The internal convection coefficient is 25 W/m²°C. What is the value of kb?arrow_forwardPlease answer question3 please show me step by step.arrow_forwardThe composite wall of an oven consists of three materials, two of which are ofknown thermal conductivity, kA = 25 W/m ⋅ K and kC = 60 W/m ⋅ K, and knownthickness, LA = 0.40 m and LC = 0.20 m. The third material, B, which is sandwichedbetween materials A and C, is of known thickness, LB = 0.20 m, but unknownthermal conductivity kB. Under steady-state operating conditions, measurementsreveal an outer surface temperature of Ts,o = 20°C, an inner surface temperature ofTs,i = 600°C, and an oven air temperature of T∞ = 800°C. The inside convection coefficient h is known to be 25 W/m2 ⋅K. Neglecting convection transfer effect,what is the value of kB?arrow_forward
- A composite wall is formed by sandwiching a 0.1 m thickness material between two steel slabs. The thermal conductivity of steel is 20 W/mK. We need to calculate the thermal conductivity of the material. The thickness of each steel slab is 0.4 m. The heat flux given at steady state is 20KW/m^2. The inner temperature of this composite wall is 700 K and the outer temperature is 200 K. Also calculate the temperature at the interface.arrow_forwardExample 2.10 Consider a 25 mm x 25 mm x 1 mm thick silicon die attached to a same size 2 mm-thick copper cap through a 0.1 mm thick thermal interface material (TIM) as shown in Figure 2.1. Convection heat transfer coefficient on the top side of the copper cap is 2500 W/m²°C. If thermal conductivity of silicon, copper, and thermal interface material are 125, 390, and 5 W/m°C, respectively, what is the total thermal resistance from the active (bottom) side of the silicon die to outside ambient?arrow_forwardLet's say a 3.0 gram copper wafer is dropped from a height of 50.0 meters. If 60% of the potential energy lost in the drop could be converted to thermal energy used to heat the copper from an initial temperature of 25 degrees celsius, what would the final temperature of the copper wafer? Would the answer be different if the wafer has a mass greater than 3 grams? Note: the specific heat of copper is 387 J/(kg*K). The temperature is between 25.8 and 26.0 degrees celsius, yes the bigger the mass the greater the energy. O The temperature is between 25.6 and 25.8 celsius, answer does not depend on mass. O The temperature is between 25.0 and 25.2 celsius, answer does not depend on mass. O The temperature is 25.5 and of course the more mass something has the greater energy will be needed to raise the temperature. The temperature is 26.2 and if the mass is doubled so will be the change in temperature. O The temperature is 25.9 degrees celsius and the answer does not depend on mass. O The…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license