Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.21P
To determine
The coefficient of performance of refrigerator.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. a. The heat flux applied to the walls of the biomass combustion furnace is 20 W/m2. The furnace walls have a thickness of 10 mm and a thermal conductivity of 12 W/m.K. If the wall surface temperature is measured to be 50oC on the left and 30oC on the right, prove that conduction heat transfer occurs at a steady state!b. Heating the iron cylinder on the bottom side is done by placing the iron on the hotplate. This iron has a length of 20 cm. The surface temperature of the hotplate is set at 300oC while the top side of the iron is in contact with the still outside air. To reach the desired hotplate temperature, it takes 5 minutes. Then it takes 15 minutes to measure the temperature of the upper side of the iron cylinder at 300oC. Show 3 proofs that heat transfer occurs transiently
The thermal conductivities of wood is kwood = 0.1W/(m°C)and air is kair = 0.0234W/(m°C).
Part A
If the temperature of the room is 20°C and outside is 10°C,
find the rate of heat flow for a wall of wood with area = 10 m² and thickness of 5cm.
O 60 W
O 304 W
O 34 W
O 200 W
O 100 W
Submit
Request Answer
Part B
The wall of wood with thickness of 5cm is now replaced with two layers of wood
and a gap of air between the wood. Each layer of wood has a 2.5cm thickness and the gap is 1cm.
The rate of heat flow will,
decreases.
increases.
stay the same.
Submit
Request Answer
Part C
The temperature in the air gap will be,
O 20°C,
between 10°C and 20°C,
O 10°C,
1. Humans are able to control their rates of heat production and heat loss to maintain a
nearly constant core temperature of Te = 37°C under a wide range of environmental
conditions. This process is called thermoregulation. From the perspective of calculating
heat transfer between a human body and its surroundings, we focus on a layer of skin:
fat, with its outer surface exposed to the environment and its inner surface at a
temperature slightly less than the core temperature, T = 35°C = 308 K. Consider a person
with a skin/fat layer of thickness L =
mm and effective thermal conductivity k = 0.3
"- The person has a surface area A = 1.8 m? and is dressed in a bathing suit. The
m· K
emissivity of the skin is ɛ = 0.95.
a). When the person is in still air at T = 282 K, what is the skin surface
temperature and rate of heat loss to the environment? Convection heat transfer
to the air is characterized by a free convection coefficient of h 2
m2 -K
b). When the person is in water at T = 282,…
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Design a refrigerator and give it specific operating conditions of your choice, then extract the values from the tables and find the value of coefficient of performance for the refrigerator.The data you choose, provided that it is not a matter(problems) of Chapter Six.arrow_forwardI am struggling with this question. Part a and barrow_forwardSteady state temperatures at three nodes are given in K. This object generates heat itself at rate of q = 5×107 W/m³ and has a thermal conductivity of 20 W/m K. Two of its sides are maintained at a constant temperature of 300 K, while the others are insulated. Find temperatures at nodes 1, 2 and 3 in K. 5 mm 2 398.0 348.5 3 374.6 - Uniform temperature, 300 K 5 mmarrow_forward
- A radioactive sphere of 20-cm diameter generates heat at the rate of 300 W. It is cooled by placing in a cold inert fluid. The fluid temperature is –20°C. At steady state, the surface temperature of the sphere was found to be 20°C. What is the heat transfer rate from the sphere?arrow_forward21:02 O 15 Ağustos 21:02 | 458 karakter Kategorilenmemiş Başlık In steady state, the heat transfer coefficient "k" is L=0.5 m LTE 26 Left face temperature of infinitely large planar plate of thickness 250°C and is exposed to a fluid with a heat transfer coefficient of 40 W/m2K. If the right face It is kept constant at T2=30°C. qü=5x10^4 W/ m3 heat inside the wall according to the production of the plate; a) left face temperature b) its maximum temperature and at what point c) The amount of heat transfer from the right and left surfaces according to the unit surface area. find it. Note: Heat transfer coefficient 10W/mKarrow_forwardSolve using the methodology : Known, Find, Schematic Diagram, Assumptions, Properties, Analysis and Comments.arrow_forward
- Q4. A hollow tube having an inside diameter of 2.5 cm and a wall thickness of 0.4 mm is exposed to an environment at h=100 W/m². C° and T=40C°. What heat generation rate in the tube will produce a maximum tube temperature of 250C° for k=24 W/m. Cº?arrow_forwardA hollow cylindrical copper conductor 1.27cm. i.d. and 5.1cm. o.d. carries a current density 5000 amp/cm². For copper K = .38 kW/m°K and electrical resistivity = 2 x 10-6 ohm cm. Find the position and magnitude of the maximum temperature and the internal and external heat removal when (a) the outside temperature is 37.8°c and no heat removal occurs on the inside and (b) the outside is at 37.6°C and the inside at 27.2°C.arrow_forwardsubject: Thermodynamicsarrow_forward
- 13. PLEASE ANSWER ASAParrow_forward1 - A square chip, with side w = 5 mm, operates under isothermal conditions.The chip is positioned on a substrate so that its side and bottom surfaces are thermally insulated, while its top surface is exposed to theflow of a refrigerant at T∞ = 15°C. From reliability considerations, the chip temperature cannot exceed T = 85°C. The refrigerant being air, with a convection heat transfer coefficientcorresponding h = 200 W/(m2K), what is the maximum allowable power for the chip? Since the coolant is a dielectric liquid for which h = 3000 W/(m²K), what is the maximum allowed power?arrow_forward(3) A thick silver wire resistance heater measures 2 m in length with a diameter of 2.5 cm. The power output of the wire is 400 watts. If the maximum temperature in the wire is 800 K, what is the temperature of the wire at r = cm? 2 L=2m 0.75 • Q = Egen = 400 W wire d = 2.5cm = 0.025m R = 0.0125m Tmax=800k = T (r = 0) T(r = 0.0075m) = ? Rarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license