Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.110P
To determine
The maximum allowable velocity of the silicon sheet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A coal-burning steam locomotive heats steam to 180 degrees Celsius and exhausts it at 100 degrees Celsius. During 1 second of operation, it consumes 500 million J of energy from the burning coal. According to Table 1 in the picture, how much work can be obtained from this locomotive during 1 second of operation under ideal conditions (no friction or other imperfections)?
In a cylindrical fuel element for a gas-cooled nuclear reactor, the heat generation rate within the fuel element due to fission can be approximated by the relation: g(r) = g_0 [1 - (r/b)^2] W/m^3 where b is the radius of the fuel element and g_0 is constant. The boundary surface at r = b is maintained at a uniform temperature T_0. Assuming one-dimensional, steady-state heat flow, develop a relation for the temperature drop from the centerline to the surface of the fuel element. For radius b = 2 cm, the thermal conductivity k = 10 W/m middot K and g_0 = 2 times 10^7 W/m^3, calculate the temperature drop from the centerline to the surface.
Example 3: The thermal contact conductance hc at the interface is 11,000 W/m2·°C. Determine the thickness of the aluminum plate whose thermal resistance is equal to the thermal resistance of the interface between the plates. (kaluminum=237 W/m.K
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An ice block at -12 oC, and of mass 3kg is completely converted into steam at 120 oC. Determine the heat involved in the process. Is the heat absorbed or released? [ shc of ice =2100 J/Kg/K ; shc of water = 4200J/Kg/K; lv=2260KJ/Kg ; lf =336000J/Kg ; shc of steam =2000J/Kg/K ]arrow_forwardProblem 204. In an 11.2 dm high cylindrical container, whose base area is 1 dm², a frictionless piston of mass 8 kg is held at a height of 5.6 dm. The piston encloses 1 mol of helium at 273 °C. The wall of the container is insulated. Find the maximum height reached by the piston after being relcased. The molar specific heat of helium at constant volume is C. = 12.6 J/(molK), while at constant pressure it is C, = 21 J/(molK). The atmospheric pressure is 10.12 N/cm2.arrow_forwardDetermine the time needed to decrease the temperature of a solid cylinder from 40 C to 35 C if the ambient temperature is equal to 31 C. The cylinder has a length equals to 0.9 m and diameter equals to 100 mm. The heat convective coefficient is equal to 9 W/m^2.K. The cylinder has a conductivity equals to 2 W/m.K, a density equals to 1200 kg/m^3 and its Cp is equal to 4.700 kJ/kgK.arrow_forward
- Q5Two large containers A and B of the same size are filled with different fluids. The fluids in containers A and B are maintainedat 0° C and 100° C, respectively. A small metal bar, whose initial temperature is 100° C, is lowered into container A. After1 minute the temperature of the bar is 90° C. After 2 minutes the bar is removed and instantly transferred to the othercontainer. After 1 minute in container B, the temperature of the bar rises 10°. How long, measured from the start of theentire process, will it take the bar to reach 99.9° C?arrow_forwardDetermine the time needed to decrease the temperature of a solid cylinder from 40 C to 35 C if the ambient temperature is equal to 31 C. The cylinder has a length equals to 0.9 m and diameter equals to 100 mm. The heat convective coefficient is equal to 1.3 W/m^2.K. The cylinder has a conductivity equals to 2 W/m.K, a density equals to 1200 kg/m^3 and its Cp is equal to 4.700 kJ/kgK. Select one: a. 83325 s O b. 10500s O c. 45360 s O d. 30050 sarrow_forwardExample 1: Single-pane window, the window have: Height = 0.8 m Width 1.5 m Thickness = 4 mm k (glass) = 0.78 W/m.K Temperature of air at inner surface = 20°C Temperature of air at outer surface = -10°C Convection heat transfer coefficient on the inner surface h1= 10 W/m2·°C Convection heat transfer coefficient on the outer surface h2= 40 W/m2·°C Determine the heat transfer through the window?arrow_forward
- As shown in the figure, an exterior wall of a building has an average thermal conductivity of 0.32 Btu/h-ft-ºR and a thickness of L = 8 in. At steady state, the temperature of the wall decreases linearly from T₁ = 70°F on the inner surface to T₂ on the outer surface. The outside ambient air temperature is To = 20°F and the convective heat transfer coefficient is 5.1 Btu/h-ft2.°R. Step 1 Determine the temperature T2 in °F. T₂ = i °F. Wall x=0.32 Btu/h ft. R T₁- Determine the temperature T₂ in °F, and the rate of heat transfer through the wall, in Btu/h per ft² of surface area. h 5.1 Btu/h ft². °R -T₂arrow_forwardA furnace wall is to be designed to transmit a maximum heat flux of 220 Btu/hr.ft of wall area. The inside and outside wall temperatures are to be 2200 • F and 320 ° F. Determine the most economical arrangement of bricks measuring (9 in x 4; in x 3 in). If they are made from materials one with ak of 0.44 Btu/hr. ft. ° F and maximum usable temperature of 1700 ° F and other with a k of 0.94 Btu/hr. ft. ° F and a maximum usable temperature of 2400 ° F. Bricks made of each material cost the same amount and may be laid in any manner (but bricks must remain intact, i.e., no partial bricks). After you answer the question, determine the percent increase in heat flux if there are two -in.-diameter steel bolts extending through the wall per square foot of wall are. (k of steel = 22 Btu/hr. ft. F)|arrow_forwardAs shown in the figure, an exterior wall of a building has an average thermal conductivity of 0.32 Btu/h-ft-ºR and a thickness of L = 4 in. At steady state, the temperature of the wall decreases linearly from T₁ = 70°F on the inner surface to T₂ on the outer surface. The outside ambient air temperature is To = 35°F and the convective heat transfer coefficient is 5.1 Btu/h-ft²-°R. Wall Step 1 Determine the temperature T₂ in °F. T₂ = i Determine the temperature T₂ in °F, and the rate of heat transfer through the wall, in Btu/h per ft² of surface area. Save for Later K=0.32 Btu/h ft. R °F. T₁- h 5.1 Btu/h ft² °R -T₂ Attempts: 0 of 4 used Submit Answerarrow_forward
- with references pleasearrow_forwardExample 4: A wall has the following specifications as shown in figure below: Height = 3 m. Width = 5m k (bricks)=0.72 W/m · °C k (plaster) = 0.22 W/m · °C k (foam) =0.026 W/m · °C. The indoor and the outdoor temperatures are 20°C and -10°C. convection heat transfer coefficients on the inner and the outer sides are h1 = 10 W/m2·°C and h2 = 25 W/m2· °C, respectively. Determine the rate of heat transfer through the wall.arrow_forwardAs shown in the figure, an exterior wall of a building has an average thermal conductivity of 0.32 Btu/h-ft-°R and a thickness of L = 6 in. At steady state, the temperature of the wall decreases linearly from T1 = 70°F on the inner surface to T2 on the outer surface. The outside ambient air temperature is To = 20°F and the convective heat transfer coefficient is 5.1 Btu/h-ft2-OR. Wall K = 0.32 Btu/h - ft °R h = 5.1 Btu/h · ft² . °R Determine the temperature T2 in °F, and the rate of heat transfer through the wall, in Btu/h per ft? of surface area.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license