Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.88P
(a)
To determine
The expression for the conduction heat flux to the cold surface and temperature of the hot surface in terms of
(b)
To determine
The expression for the heat flux associated with plane wall without energy generation whose surface temperature are
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
answer provided is correct
The temperatures on the faces of a plane wall 20 cm thick are 400 and 90 ℃. The wall is constructed of a special glass with the following properties: k = 0.8 W∙m-1K-1, ρ = 2750 kgm-3, cP = 0.86 kJkg-1K-1. What is the heat flux (q") through the wall at steady-state conditions?
19 mm diameter steel balls are quenched by heating to 989 K followed by slow cooling to 400 K in an environment with air at T∞ = 325 K and h = 39 W/m2.K. Assuming that the steel properties are k = 40 W/m.K, ρ = 7800 kg/m3 and C = 600 J/kg.K, estimate the time (in "minutes") required for the cooling process.
Bolas de aço com 19 mm de diâmetro são temperadas pelo aquecimento a 989 K seguido pelo resfriamento lento até 400 K em um ambiente com ar a T∞ = 325 K e h = 39 W/m2.K. Admitindo que as propriedades do aço sejam k = 40 W/m.K, ρ = 7800 kg/m3 e C = 600 J/kg.K, estime o tempo (em "minutos") necessário para o processo de resfriamento.
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3.2 High-strength steel is required for use in building structures and equipment (e.g., cranes). It is produced by heat treating quench-hardened steel in a process called tempering that reduces brittleness and imparts toughness. In a production facility, alloy steel plates (k = 50 W/m K, c = 460 J/kg K, and ρ = 7865 kg/m3) of thickness 3.0 cm have to be tempered in a convective oven by heating them to 550°C. If the plates are initially at 40°C and the air inside the heat treating oven is at 700°C with a convective heat transfer coefficient of 45 W/m2 K, determine how long the plate has to remain in the oven.arrow_forwardA 0.6-cm diameter mild steel rod at 38C is suddenly immersed in a liquid at 93C with hc=110W/m2K. Determine the time required for the rod to warm to 88C.arrow_forward2.2 A small dam, which is idealized by a large slab 1.2 m thick, is to be completely poured in a short Period of time. The hydration of the concrete results in the equivalent of a distributed source of constant strength of 100 W/m3. If both dam surfaces are at 16°C, determine the maximum temperature to which the concrete will be subjected, assuming steady-state conditions. The thermal conductivity of the wet concrete can be taken as 0.84 W/m K.arrow_forward
- Steel cubes 10 mm in width are annealed by heating to 1,377 K and then slowly cooling to 469 K in an air environment for which T∞ = 301 K and h = 24 W/m2-K. Assuming the properties of the steel to be k = 24 W/m · K, ρ = 7,047 kg/m3, and c = 916 J/kg · K, estimate the time required for the cooling process.arrow_forwardInclude a picture and assumptions about problemarrow_forwardShown below is an insulated copper block that receives energy at a rate of 100 W from anembedded resistor. If the block has a volume of 10-3 m3and an initial temperature of 20oC, howlong would it take, in minutes, for the temperature to reach 60oC? Copper has a specific heatcapacity ccu = 0:385 kJ/ kg.K and a density of cu = 8930 kg/m3.arrow_forward
- A glass vessel with an insulating cover with a surface area of (Z + 100) cm² and (Z + 15) mm thick is filled with ice at 0° C and placed in a second vessel maintained at a temperature of 100° C. Find the mass of the ice that melts per minute when the flow of heat becomes steady. Latent heat of ice = 3.3 x 105 J/kg and K for glass = 1.0 W /mK. %3!arrow_forwardQ1/ The center to surface temperature difference in a heat generating cylindrical rod of 4 m diameter was 30°C. What is the difference temperature between the center and surface in the case of a sphere of 2 m diameter under similar conditions? * Your answer Q2/ A metal plate of 4mm thickness (k = 95.5 W/m°C) is exposed to vapor at 100°C on one side and cooling water at 25°C on the opposite side. The heat transfer coefficients on vapor side and waterside are 14500 W/m^2°C and 2250 W/m^2 °C respectively. Determine the overall heat transfer coefficient * Your answerarrow_forwardIt is required to perform a heat treatment for gas turbine applications, for them it is required to analyze a sample of the material to be used. The analysis will be performed using the method of a semi-infinite cylinder of stainless steel 12Awith the following thermal properties; (ρ=8700 kg/m3, Cp = 897 J/kg. °C and k = 242 W/m. °C. Of diameter D=12 cm is initially at a uniform temperature of 120 °C. Then the cylinder is placed in a furnace at a constant heat flux of 3800 W/m2, a temperature of 60 °C andh= 170 W/m2. Determine the temperature at the center of the cylinder 3.5 cm from the end surface 6 minutes after placing it in the furnace.arrow_forward
- Steel balls 12 mm in diameter are annealed by heating to 1100 K and then slowly cooling to 360 K in an air environment for which T. = 325 Kand h = 20 W/m2-K. Assuming the properties of the steel to be k = 40 W/m-K,p = 7800 kg/m, and c = 600 J/kg-K, estimate the time required for the cooling process. The time required for the cooling process isi h.arrow_forward6. a. The heat flux applied to the walls of the biomass combustion furnace is 20 W/m2. The furnace walls have a thickness of 10 mm and a thermal conductivity of 12 W/m.K. If the wall surface temperature is measured to be 50oC on the left and 30oC on the right, prove that conduction heat transfer occurs at a steady state!b. Heating the iron cylinder on the bottom side is done by placing the iron on the hotplate. This iron has a length of 20 cm. The surface temperature of the hotplate is set at 300oC while the top side of the iron is in contact with the still outside air. To reach the desired hotplate temperature, it takes 5 minutes. Then it takes 15 minutes to measure the temperature of the upper side of the iron cylinder at 300oC. Show 3 proofs that heat transfer occurs transientlyarrow_forwardI need the answer as soon as possiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
composite-materials; Author: Tonya Coffey;https://www.youtube.com/watch?v=Vu6ik-bcKf4;License: Standard youtube license