Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.103P
To determine
The temperature distribution in the container.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
polymer operations
Thank you for you assist
Advanced hybrid materials technology has been used in automotive applications. A good example is engine block made of aluminum body with cast iron liner as shown in Figure. Please explain its advantages and possible disadvantages
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- ...2/ A plant wishes to dry a certain type of fiberboard. To determine drying characteristic, a sample of 0.3 × 0.3 m with edges sealed was suspended from a balance and exposed to a current of hot dry air. Initial moisture content was 75%. The sheet lost weight at the rate of 1 104 Kg /s unit the moisture content fell to 60%. It was established that the equilibrium moisture content was 10 %.The dry mass of the sample was 0.90 Kg.All moisture contents were on wet basis .Determine the time for drying the sheets from 75% to 20% moisture under the same drying conditions.arrow_forwardFor the 21.5-cm thick multilayer assembly as listed below, please estimate the temperature on the interface between material layers 3 and 4 Material layers - counted from the interior side: (1) 1.5 - cm gypsum board; (2) 4.0-cm - concrete of density - 2400-kg/m3; (3) 10-cm of XPS foam; (4) 6.0-cm - concrete of density - 2400-kg/m3 Interior film resistance is Ri = 0.121 m2K/W Exterior film resistance is Re - 0.029 m2K/W Internal temperature +20 degC External Temperature - 20 degCarrow_forwardFor the 21.5-cm thick multilayer assembly as listed below, please estimate the temperature on the interface between material layers 3 and 4 Material layers - counted from the interior side: (1) 1.5 - cm gypsum board; (2) 4.0-cm - concrete of density - 2400-kg/m3; (3) 10-cm of XPS foam; (4) 6.0-cm - concrete of density - 2400-kg/m3 Interior film resistance is Ri = 0.121 m2K/W Exterior film resistance is Re - 0.029 m2K/W Internal temperature +20 degC External Temperature - 20 degC All necessary material properties can be found in the ASHRAE Handbook of Fundamentals, or other sourcesarrow_forward
- Nanotechnology, the field of building ultrasmall structures one atom at a time, has progressed in recent years. One potential application of nanotechnology is the construction of artificial cells. The simplest cells would probably mimic red blood cells, the body’s oxygen transporters. Nanocontainers, perhaps constructed of carbon, could be pumped full of oxygen and injected into a person’s bloodstream. If the person needed additional oxygen—due to a heart attack or for the purpose of space travel, for example—these containers could slowly release oxygen into the blood, allowing tissues that would otherwise die to remain alive. Suppose that the nanocontainers were cubic and had an edge length of 25 nanometers. Suppose that each nanocontainer could contain pure oxygen pressurized to a density of 85 g/L. How many grams of oxygen could be contained by each nanocontainer?arrow_forwardNanotechnology, the field of building ultrasmall structures one atom at a time, has progressed in recent years. One potential application of nanotechnology is the construction of artificial cells. The simplest cells would probably mimic red blood cells, the body’s oxygen transporters. Nanocontainers, perhaps constructed of carbon, could be pumped full of oxygen and injected into a person’s bloodstream. If the person needed additional oxygen—due to a heart attack or for the purpose of space travel, for example—these containers could slowly release oxygen into the blood, allowing tissues that would otherwise die to remain alive. Suppose that the nanocontainers were cubic and had an edge length of 25 nanometers. What is the volume of one nanocontainer? (Ignore the thickness of the nanocontainer’s wall.)arrow_forwardThermal Diffusivity Estimate the thermal diffusivity of butter at 20°C.arrow_forward
- Metal spheres, 10 mm in diameter, are to be annealed by heating them to 827°C then allowing them to cool slowly in air at 27°C to the point where they are in thermal equilibrium with the air. 2000 balls are annealed in one hour’s time. What is the total rate of their heat transfer if they are made of steel, lead, or copper? a.Sketch the problem. b.Draw lines identifying the control volume, or control mass. c.Identify the states with numbers, letters, or descriptions such as “in” and “out”. d.Write down the knowns and unknowns. e.Identify what is being asked for. f.State all assumptions.arrow_forwardLightweight epoxy composite with thermal insulation properties is required. Use a hollow glass ball as a stabilizer. Glass balls 1/16 inch in diameter and 0.001 inch in wall thickness. It weighs one foot and has a density of 0.65 g / cm3 The glass ball epoxy of any weight trying to produce a composite to do more? The density of glass is 2.5 g / cm3 and that of epoxy is 1.25 g / cm3arrow_forwardDr Downey is trying his hand at fording and has made a blade of 15N20 steel that can be assumed to be a rectangle with the dimensions of 50x5x250mm. To get the best mechanical properties, the blade needs to be quenched (rapidly cooled) from 800°C to 125°C in oil at a temperature of 25°C to form Martensite. From his material science background Dr Downey calculates that the quench must not take longer than 200s. Some thermal transport properties are shown in the figure below. Calculate the time that is needed for the blade to reach 125°C. Will these conditions be less than the required quench time? Be sure to show that you have verified your method is valid. 250mm 5mm To: 25 °C h: 200 W/m²/K K15N20 35.7 W/m/K CP15N20 1058 J/kg/K P15N20 7817 kg/m³ 50mmarrow_forward
- A 1.02den silk fiber has reached its maximum tenacity value. How many grams (force) would it take to rupture such fiber when dry? Provide your answer with two (2) decimal positions and no unit Answer:arrow_forwardDefine the Work Associated with the Stretching of a Liquid Film?arrow_forwardYou are asked to design an insulated stud timber wall and have the following materials available: Outer skin materials. ● Plasterboard 8 mm thick (k= 0.3 W/m.K) Plasterboard 12.5 mm thick (k = 0.3 W/m.K) Insulated Plasterboard 25 mm thick (k = 0.2 W/m.K) Timber studs available (k = 0.1 W/m.K) 50 mm x 100 mm 50 mm x 120 mm 50 mm x 150 mm Insulation layers Glass fibre insulation (k= 0.05 W/m.K) ● Polyisocyanurate insulation (k= 0.025 W/m.K) Sheeps wool insulation (k= 0.04 W/m.K) ● Wall construction should consist of two outer plasterboard skins, followed by an appropriate stud/insulation infill layer. Studs can be placed vertically at 400 mm or 600 mm intervals and you may ignore any requirement for horizontal studding. 1) Draw a plan (top view) cross section of your wall indicating dimensions, spacing and material choices. 2) Calculate the thermal resistance of your wall. 3) If the internal convective heat transfer coefficient in room one is 10 W/m²K and in the second room it is 15…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license