Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.121P
(a)
To determine
Expression for the measurement error
(b)
To determine
The measurement error for total length ratios 0.225, 0.425 and 0.625.
(c)
To determine
To plot: the effect of thermal conductivity and water velocity on temperature error.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cylindrical electrical heating element is used to heat up a baking oven. The heating element bears a voltage of 120 V/m, and has an electrical resistance of 1000 Ω/m. A ceramic pipe of inside radius rin = 2 mm, and outside radius rout = 5 mm encases the heating element. Thermal conductivity of the ceramic is k = 0.2 W/m-K. Given that the oven air temperature is T∞ = 180oC and convection coefficient h = 10 W/m2-K, find the temperature on the inside of the ceramic pipe.
3
• A piece of chromium steel of length 7.4cm (density= 8780kg/m³,
k=50 W/m K) and specific heat capacity (C,=440 J/kg K) with mass
1.27 kg is rolled into a solid cylinder and heated to a temperature
of 600 °C and quenched in oil at 36 °C. Show that the lumped
capacitance system analysis is applicable and find the temperature of
the cylinder after 4min. What is the total heat transfer during this
period? You may take the convective heat transfer coefficient
between the oil and cylinder at 280 W/m2K.
delete
home
< backsac
ock
7.
home
F
enter
4.
Example: current of 200 A is passed through a stainless-steel wire [k = 19 W/m · ◦C] 3 mm in diameter. he resistivity of the steel may be taken as 70 μ · cm, and the length of the wire is 1 m. The ire is submerged in a liquid at 110 ◦C and experiences a convection heat-transfer coefficient of k W/m2 · ◦C. Calculate the center temperature of the wire.
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- You have a solid with a semicylindrical shape. One ofthe bases is located in θ = 0 , of area (r 2 - r 1 )L and is maintained at temperature T 0 and the other islocated at θ = π and also of area equal to (r 2 -r 1 )Lhas temperature is equal to Tπ. The conductivityThe thermal temperature of the solid varies linearly with thetemperature from k 0 at T=T 0 to kπ at T=Tπ a. Find the temperature distribution instationary stateb. Find the total heat flux through thesurface at θ = 0.arrow_forwardProblem 7: Copper wire has a resistivity ρ = 1.7 × 10-8 Ω⋅m when at 20°C and it has a temperature coefficient α = 3.9 × 10-3 K-1. A solid cylinder of copper of length L = 85 cm and diameter D = 3.5 mm has one end held at T1 = 14°C and the other end is held at T2 = 210°C. The temperature increases linearly between the two ends of the cylinder. A) Consider a thin slice of the copper cylinder of thickness dx that is located a distance x from the left end of the cylinder. Write an equation for the temperature of this slice in terms of the variables x, L, T1, and T2. B) Determine the total resistance in milliohms.arrow_forwardAn electric cable consists of an inner core and an outer protection layer. The shape of the cable can be approximated as a cylinder. The diameter of the inner core is D1 = 1.6 cm and the total diameter of the cable is D2 = 2 cm. The thermal conductivities for the cable inner core and outer layer are k = 50 W/m·K and k = 0.1 W/m·K, respectively. The electric current in the inner core causes a volumetric thermal energy generation rate of q ̇ = 10^(6) W/(m^(3)) . The cable is placed in an air crossflow of u∞ = 2 m/s and T∞ = 300 K. The air in the film around the cylinder has a kinematiccrossflow of u∞ = 2 m/s and T∞ = 300 K. The air in the film around the cylinder has a kinematic viscosity of ν = 2 × 10^(−5 )(m^2)/s, thermal conductivity of kf = 0.025 W/m · K, and Prandtl number of Pr=0.7. Assume one-dimensional and steady-state conduction heat transfer along the radial direction of the cable cross section. Perform heat transfer analysis for a section of the cable with length L = 10 cm.…arrow_forward
- A cylindrical pipe is made up of two materials. The inner material A, which has thermal conductivity of ka, has inner radius ra and outer radius re. On the other hand, the outer material B, which has thermal conductivity of kb, has inner radius re and outer radius rb. Contact resistance between the two materials is known to be hc. The temperature at the inner radius of material A (at ra) is Ta, while the temperature at the outer radius of material B (at ri) is T3. Find an expression for the temperature at the inner radius of material B (at r.) in terms of the given variables.arrow_forwardProblem 5: A hollow sphere is constructed of aluminum with an inner diameter of 4 cm and an outer diameter of 8 cm. The inside temperature is 100◦C and the outer temperature is 50◦C. Calculate the heat transfer. Problem 6: Suppose the sphere in Problem 5 is covered with a 1-cm layer of an insulating material having k = 50 m W/m · ◦C and the outside of the insulation has a temperature of 35 oC. The inside of the sphere remains at 100◦C. Calculate the heat transfer under these conditions.arrow_forward(3) A thick silver wire resistance heater measures 2 m in length with a diameter of 2.5 cm. The power output of the wire is 400 watts. If the maximum temperature in the wire is 800 K, what is the temperature of the wire at r = cm? 2 L=2m 0.75 • Q = Egen = 400 W wire d = 2.5cm = 0.025m R = 0.0125m Tmax=800k = T (r = 0) T(r = 0.0075m) = ? Rarrow_forward
- A plane wall 20 cm thick with uniform internal heat generation of 200 kW/m3 is exposed to a convection environment on both sides at 50◦C with h = 400 W/m2 · ◦C. Calculate the center temperature of the wall for k = 20 W/m · ◦C.arrow_forwardA large steel plate having a thickness of L = 4 in, thermal conductivity of k= 7.2 Btu/h·ft. °F, and an emissivity of ε = 0.7 is lying on the ground. The exposed surface of the plate at x = L is known to exchange heat by convection with the ambient air at T∞ = 90°F with an average heat transfer coefficient of h = 12 Btu/h·ft².°F as well as by radiation with the open sky with an equivalent sky temperature of Tsky =480 R. Also, the temperature of the upper surface of the plate is measured to be 80°F. Assuming steady one-dimensional heat transfer, (a) express the differential equation and the boundary conditions for heat conduction through the plate, (b) obtain a relation for the variation of temperature in the plate by solving the differential equation, and (c) determine the value of the lower surface temperature of the plate at x = 0. Tsky h, To Convection Radiation XA 80°F L E Plate 0 Groundarrow_forwardFind the total heat flux of the composite wall when: B F KA = KC = KF = 15 т. К A E KB = KD = 10 т. К KE = KG = 20 т. К D. Height of B = C = D 4 cm 3 cm 4 cm 6 cm Height of F = G AT = 30 K て)arrow_forward
- An oven made of stone with 3 m length and semi-cylindrical shape losses heat from inlet section of the surface shell (ri = 50 cm) to outlet section (ro = 62 cm) by convection and radiation. According to the system conditions showing on the following figure; calculate Ti value if To temperature is 35 °C (Assume steady state and one dimensional condition and ε = 0,90; σ = 5,67x10-8 W/m2K4)arrow_forward2. A glass window has an area of 5.5 ft² and a thickness of 5 mm. If one side is at a temperature of 45° F and the other is at 23 F, how much thermal energy (BTU/year) flows through the window in one year? The thermal conductivity of glass is 1.89x10-4 kcal/m-s-K.arrow_forward1.A carpenter builds an exterior house wall with a layer of wood 3.0 cm thick on the outside and a layer of Styrofoam insulation 2.2 cm thick on the inside wall surface. The wood has a thermal conductivity of 0.080 W/(m⋅K), and the Styrofoam has a thermal conductivity of 0.010 W/(m⋅K). The interior surface temperature is 19.0°C, and the exterior surface temperature is −10.0°C. (a) What is the temperature at the plane where the wood meets the Styrofoam? (b) What is the rate of heat flow per square meter through this wall?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license