Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.113P
(a)
To determine
The differential equation for the temperature distribution in the plate.
(b)
To determine
To solve: the temperature differential equation and heat transfer through the plate.
(c)
To determine
To plot: the temperature distribution for different convection and sink heat rate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the two-dimensional temperature distribution T(r,z) under steady state condition. Where, To=20 oC, TL=100 oC. The density, conductivity and specific heat of the material are ρ =800 kg/m3, k=200 W/m.K, and cp=2500 J/kg.K, respectively. Also, r1=10 cm and L=20 cm.
Find the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are ρ =1200
kg/m 3, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux q =1000 W/m 2 is applied to the upper surface. The right and left surfaces are also kept at 0oC. Bottom surface is insulated.
Find the two-dimensional temperature distribution T(r,z) under steady state condition. Where, To=20 oC, TL=8200 oC. The density, conductivity and specific heat of the material are ρ =800 kg/m3, k=200 W/m.K, and cp=2500 J/kg.K, respectively. Also, r1=820 cm and L=1640 cm.
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are p=(1200*32)kg/mº, k=400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux 9" =1000 W/m² is applied to the upper surface. The right and left surfaces are also kept at 0°C. Bottom surface is insulated. 9" (W/m) T=0°C T=0°C W=(10*32)cm B=(30*32)cmarrow_forwardFind the two-dimensional temperature distribution T(x,y) and midplane temperature T(B/2,W/2) under steady state condition. The density, conductivity and specific heat of the material are p= 62400 kg/m', k-400 W/m.K, and cp=2500 J/kg.K, respectively. A uniform heat flux q%=1000 W/m² is applied to 2. the upper surface. The right and left surfaces are also kept at 0°C. Bottom surface is insulated. 9% (W/m³) y4 T = 0 °C T = 0°C W= 520 cm B=1560 cmarrow_forwardA plane wall of thickness 2L = 30 mm and thermal conductivity k = 7 W/m-K experiences uniform volumetric heat generation at a rate q, while convection heat transfer occurs at both of its surfaces (x = − L, + L), each of which is exposed to a fluid of temperature T = 20°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a + bx + cx² where a = 82.0°C, b = -210°C/m, c = -2x 10°C/m², and x is in meters. The origin of the x-coordinate is at the midplane of the wall. (a) What is the volumetric rate à of heat generation in the wall? (b) Determine the surface heat fluxes, q" (L)and q ( + L). (c) What are the convection coefficients for the surfaces at x = - Land x = + L? The volumetric rate of heat generation in the wall, in W/m³: q = i W/m³ The surface heat flux, in W/m²: qx ( - L) = i The surface heat flux, in W/m²: q (+ L) = i W/m² W/m² The convection coefficients for the surface at x = - L, in W/m²-K: h(- L) = i W/m².K The convection…arrow_forward
- Q1/A long cylindrical shell of inner radius R, = 1 cm, outer radius R₂ = 2 cm, and length L = 10 m is shown in the Figure. The inner wall of cylindrical shell is maintained at constant temperature T₁ = 10 C and outer wall is maintained at constant temperature T2 Calculate the temperature at r = 1.5 cm (Consider radial conduction only). 20 C. Assumptions: System is in steady state. Thermal conductivity, k= 22.5 W/m C, is constant. System follows Fourier's law of heat conduction. Heat loss in axial direction is negligible, T₁ - R₂ T₂arrow_forwardA plane wall of thickness 2L = 2*33 mm and thermal conductivity k = 7 W/m-K experiences uniform volumetric heat generation at a rate q˙, while convection heat transfer occurs at both of its surfaces (x = −L, + L), each of which is exposed to a fluid of temperature T∞ = 31°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a + bx + cx2 where a = 85°C, b = −-218°C/m, c = −-23,942°C/m2, and x is in meters. The origin of the x-coordinate is at the midplane of the wall. (a) Sketch the temperature distribution and identify significant physical features. (b) What is the volumetric rate of heat generation q˙ in the wall? (c) Obtain an expression for the heat flux distribution qx″(x). Is the heat flux zero at any location? Explain any significant features of the distribution. (d) Determine the surface heat fluxes, qx″(−L) and qx″(+L). How are these fluxes related to the heat generation rate? (e) What are the convection coefficients…arrow_forwardBelow is the dynamics of heat transfer: A container in an oven for instance dTc 1 1 ·TC+⋅ dt R+Ct -Tamb R+Ct In this equation, the container temperature Tc is the Output and the ambient temperature Tamb is the input. Thermal resistance and capacitance values are C+=7000 J/°C and R₁ = 0.0142858 W/°C. Initial condition is zero: Tc (0) = 0 °C. Obtain the transfer function of the system Create a table to compute its frequency response characteristics by considering low frequency region and high frequency region. Also consider a middle frequency. For low frequency region, consider a = 1e - 4 rad/s and w=1e-3-rad/s. For middle frequency, consider w=1e- 2 rad/s. For high frequency region, consider w = 1e-1 rad/s and w=1rad/s Using the magnitude and phase responses you tabulated, hand-sketch its Bode diagram. Clearly show low frequency and high frequency assumptions your drawing. Smoothen the diagram by considering the magnitude and phase at the middle frequency.arrow_forward
- 4.21 Consider a plate of thickness L which is initially at zero temperature. At t20 one side is insulated while the other side is maintained at a time dependent temperature given by T = A, t, 0ststa, T = A, t, Use Duhamel's integral to determine the one-dimensional transient temperature.arrow_forwardsubject: Thermodynamicsarrow_forward9arrow_forward
- = Consider a large plane wall of thickness L=0.3 m, thermal conductivity k = 2.5 W/m.K, and surface area A = 12 m². The left side of the wall at x=0 is subjected to a net heat flux of ɖo = 700 W/m² while the temperature at that surface is measured to be T₁ = 80°C. Assuming constant thermal conductivity and no heat generation in the wall, (a) express the differential equation and the boundary equations for steady one- dimensional heat conduction through the wall, (b) obtain a relation for the variation of the temperature in the wall by solving the differential equation, and (c) evaluate the temperature of the right surface of the wall at x=L. Ti до L Xarrow_forwardThe heat flow per unit length of a thick cylindrical pipe is 772 W per meter. The pipe has radii ri = 12 cm, ro = 24 cm, outside surface temperature, To = 95 deg C and k = 0.05 + 0.0008T where T is in deg C and k is in W/(m K). Find the inside surface temperature of the pipe, assuming steady state conditions and accounting for the variation of thermal conductivity with temperature. Also determine the temperature of a point midway to the inside and outside radius.arrow_forward3.10 By neglecting lateral temperature variation in the analysis of fins, h,T. 木 H two-dimensional conduction is modeled as a one-dimensional H problem. То examine this T, h,T. approximation, consider a semi- infinite plate of thickness 2H. The base is maintained at uniform temperature T,. The plate exchanges heat by convection at its semi- infinite surfaces. The heat transfer coefficient is h and the ambient temperature is T.. Determine the heat transfer rate at the base.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license