Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.114P
(1)
To determine
The minimum separation distance if thermocouple junction consists of copper and constantan.
(2)
To determine
The minimum separation distance if thermocouple junction consists of copper and constantan.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Write the finite difference form of the two dimensional steady state heat conduction equation with internal heat generation at a constant rate ‘g’ for a region 0.03m X 0.03m by using a mesh size ∆x=∆y= 0.01 m for a material having thermal conductivity 25 W/m.K and heat generation rate, 107 W/m3 . All the boundary surfaces are maintained at 10°C. Express the finite difference equations in matrix form for the unknown node temperatures.
A very long, rectangular cross-section block is made from metal with the following properties: thermal conductivity = 130 W/mK, density = 2771 kg/m³, and specific heat
capacity = 703 J/kgK. Initially all 4 sides of the cross section are maintained at 373 K. Then the temperature of one side is suddenly increased to 473 K. The temperature
profile in the block will be investigated using an explicit finite difference model. If the time step is fixed at 5.5 seconds, what is the limit for node spacing that should be
used to ensure stability of the solution? Give your numerical answer in mm to 1 decimal place.
A 1-D conduction heat transfer problem with internal energy generation is governed by the following equation:
+-=
dx2 =0
W
where è = 5E5 and k = 32 If you are given the following node diagram with a spacing of Ax = .02m and know that
m-K
T = 611K and T, = 600K, write the general equation for these internal nodes in finite difference form and determine the
temperature at nodes 3 and 4.
Insulated
Ar
, T
For the answer window, enter the temperature at node 4 in Kelvin (K).
Your Answer:
EN
SORN
Answer
units
Pri
qu) 232 PM
4/27/2022
99+
66°F Sunny a .
20
ENLARGED
oW TEXTURE
PRT SCR
IOS
DEL
F8
F10
F12
BACKSPACE
num
-
%3D
LOCK
HOME
PGUP
170
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.15 Suppose that a pipe carrying a hot fluid with an external temperature of and outer radius is to be insulated with an insulation material of thermal conductivity k and outer radius . Show that if the convection heat transfer coefficient on the outside of the insulation is and the environmental temperature is , the addition of insulation actually increases the rate of heat loss if , and the maximum heat loss occurs when . This radius, is often called the critical radius.arrow_forwardA square silicon chip 7mm7mm in size and 0.5-mm thick is mounted on a plastic substrate as shown in the sketch below. The top surface of the chip is cooled by a synthetic liquid flowing over it. Electronic circuits on the bottom of the chip generate heat at a rate of 5 W that must be transferred through the chip. Estimate the steady-state temperature difference between the front and back surfaces of the chip. The thermal conductivity of silicon is 150 W/m K. Problem 1.6arrow_forward!arrow_forward
- The initial temperature distribution of a 5 cm long stick is given by the following function. The circumference of the rod in question is completely insulated, but both ends are kept at a temperature of 0 °C. Obtain the heat conduction along the rod as a function of time and position ? (x = 1.752 cm²/s for the bar in question) 100 A) T(x1) = 1 Sin ().e(-1,752 (³¹)+(sin().e (-1,752 (²) ₁ + 1 3π TC3 .....) 100 t + ··· ....... 13) T(x,t) = 200 Sin ().e(-1,752 (²t) + (sin (3). e (-1,752 (7) ²) t B) 3/3 t + …............) C) T(x.t) = 200 Sin ().e(-1,752 (²t) (sin().e(-1,752 (7) ²) t – D) T(x,t) = 200 Sin ().e(-1,752 (²)-(sin().e (-1,752 (²7) ²) t E) T(x.t)=(Sin().e(-1,752 (²t)-(sin().e(-1,752 (²) t+ t + ··· .........) t +.... t + ··· .........) …..)arrow_forwardAn annulus (e.g., a tube) has a temperature of Ti at the inner surface (at ri) and a temperature of To at the outer surface (at ro). Steady-state conditions prevail and there is not any heat generation in the annulus. However, the thermal conductivity k of the annulus is a strong function of temperature and can be described mathematically by the following function k(T) = a + bT + cT2. Calculate the total rate of heat flow (not heat flux) through the annulus if it is L long. Show steps to get to the answer attached.arrow_forwardContinuous temperature distribution in a semi-permeable material with laser radiation on it, thickness L and with a heat conduction coefficient k, T(x)=-A/k.a^2.e^-ax+Bx+C It is given by equality. Here A, a, B and C are known constants. For this case, the radiation absorption in the material manifests itself in a uniform heat generation term in the form q (x). a) Obtain a relationship for the type that gives the conduction heat fluxes on the front and back surfaces. b) get a correlation for q(x) c) Obtain a relation that gives the radiation energy produced per unit surface area in the whole material.arrow_forward
- Problem 4 A cork board (k = 0.039W/m K) 3 cm thick is exposed to air with an average temperature T.. = 30°C with a convection heat transfer coefficient, h = 25 W/m².K. The other surface of the board is held at a constant temperature of 15°C. A volumetric heat generation of 5 W/m³ is occurring inside the wall. Assuming one dimensional conduction, write the governing equation and express the boundary conditions for the wall. (solve the equation is not required) Problomarrow_forwardIn this question, we are concerned with the evolution of the temperature u(x, t) in a homogeneous thin heat conducting rod of length L = 1. We can consider that the rod is laterally insulated as to have a one-dimensional problem. The evolution of the temperature is governed by the one-dimensional heat equation ди 0 0 = K Ət Əx2' Assume that this equation is subject to the following initial conditions u(x,0) = f(x) and boundary conditions (0, t) = 0 and ди (1,t) + и(1,t) — 0 (i) Discuss briefly the physical meaning of the boundary conditions.arrow_forwardPlease I need solutions speed time pleasearrow_forward
- The heat flow per unit length of a thick cylindrical pipe is 772 W per meter. The pipe has radii ri = 12 cm, ro = 24 cm, outside surface temperature, To = 95 deg C and k = 0.05 + 0.0008T where T is in deg C and k is in W/(m K). Find the inside surface temperature of the pipe, assuming steady state conditions and accounting for the variation of thermal conductivity with temperature. Also determine the temperature of a point midway to the inside and outside radius.arrow_forward(Q4) A 4m x 6m wall consists of 4 glass windows of 2m x 1.5m dimensions. The wall has thickness of 0.13m and a thermal conductivity of 0.5 W/m.K, while the glass windows are 6 mm thick with a thermal conductivity of 1.228 W/m.K. The values of intemal and external surface conductance for the wall (including glass) are 7.8 W/m? K and 34.4 W/m².K, respectively. The intemal and extemal temperatures are 22° C and 42°C, respectively. Calculate the total heat transfer rate through the wall. What percentage of this heat transfer is through the windows?arrow_forwardUsing a finite element method, solve the equationd^2T/dx^2 = -f(x)For a 10 cm rod with boundary conditions of T(0,t) = 30°C and T(10,t) = 160°C and a uniform heat source of f(x) = 25.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Introduction to Ferrous and Non-Ferrous Metals.; Author: Vincent Ryan;https://www.youtube.com/watch?v=zwnblxXyERE;License: Standard Youtube License