Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.112P
(a)
To determine
The differential equation for the steady-state temperature distribution
(b)
To determine
The rate of heat transfer from plate to heat sinks.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q1
Passage of an electric current through a long conducting
rod of radius r; and thermal conductivity k, results in
uniform volumetric heating at a rate of ġ. The conduct-
ing rod is wrapped in an electrically nonconducting
cladding material of outer radius r, and thermal conduc-
tivity k, and convection cooling is provided by an
adjoining fluid.
Conducting
rod, ġ, k,
11
To
Čladding, ke
For steady-state conditions, write appropriate forms of
the heat equations for the rod and cladding. Express ap-
propriate boundary conditions for the solution of these
equations.
The TPD method measures temperature elevations in a tissue region during a heating pulse
and its later temperature decay after the pulse. It is then using the Pennes bioheat equation to perform a
curve fitting to determine the local blood perfusion rate. If the TPD probe is placed in the vicinity of very
large blood vessel, will the TPD technique provide an accurate measurement of the local blood perfusion
in the vicinity of this large blood vessel? Explain briefly. (Hint: Is the Pennes bioheat equation accurate
surrounding a large blood vessel?)
The schematic below illustrates a tank formed from two zones, i.e. liquid and solid. The tank is heated from the left-side with a time-varying solar heat radiation g,ol =f(t)
(Wim), while the right-side is kept at a low temperature T. The top surface of the tank is subjected to the ambient conditions, i.e. (hair & Tair ), while its bottom is
thermally insulated. Conjugate heat transfer takes place between the two-physically different zones through the fluid-solid interface separating them, while fluid flow is
induced due to buoyancy effects where the buoyancy force is approximated according to Boussinesq formulation Fiuoyaney=P0 Bg(T-To). Explain the following:
1- The assumptions required to simulate the below problem.
2- The conservation equations governing the transport phenomena in each zone.
3- The boundary conditions closing the mathematical model.
4- The discretized form of each conservation equation stated in (point 2) above.
5- The appropriate differencing scheme to be used for…
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 1-D conduction heat transfer problem with internal energy generation is governed by the following equation: +-= dx2 =0 W where è = 5E5 and k = 32 If you are given the following node diagram with a spacing of Ax = .02m and know that m-K T = 611K and T, = 600K, write the general equation for these internal nodes in finite difference form and determine the temperature at nodes 3 and 4. Insulated Ar , T For the answer window, enter the temperature at node 4 in Kelvin (K). Your Answer: EN SORN Answer units Pri qu) 232 PM 4/27/2022 99+ 66°F Sunny a . 20 ENLARGED oW TEXTURE PRT SCR IOS DEL F8 F10 F12 BACKSPACE num - %3D LOCK HOME PGUP 170arrow_forwardThe nuclear fuel in cylindrical shape of length L at radius R is covered with aluminum shell at radius RC. The heat energy (Sn) that emerges as a result of splitting in nuclear fuel is per unit volume and is in the form of a parabolic function. Determine the temperature distribution in both regions for the steady state by taking the outer surface temperature of the cylinder. 1/2 Sn = Sn. [a + b(r)] "d 5. RC (cal/cm³ s) Toarrow_forwardYou are tasked to design a cooling system for an ice rink. A standard ice rink has surface area ofArink = 1580 m2 . In this design, a technologically advanced solid state thermoelectric generatingcooling plate is placed in between concrete slabs. The following diagram contains the dimensionalparameters of the design (a) In the space below, with your best effort to correspond to the above diagram, draw a thermalcircuit that establishes the relationship between the cooling plate’s heat rate, Q, and the system’stemperatures and thermal resistances. Label the appropriate dimensions, thermal conductivities,convection coefficient, and temperatures. Ignore effects from contact resistance. (b) Given that the temperature at the top surface of the ice must be T ice = -5°C, obtain the requiredheat rate Q that must be drawn by the cooling plate in units Kilowatts. Be careful of +/- sign.Answer: ____________________________ [kW] c) Using the thermal circuit you established in Part (a), obtain the…arrow_forward
- Passage of an electric current through a long conducting rod of radius r; and thermal conductivity kr, results in uniform volumetric heating at a rate of q. The conduction rod is wrapped in an electrically non-conducting cladding material of radius ro and thermal conductivity ke and convection cooling is provided by an adjoining fluid. For steady-state conditions, a) Determine an expression for the heat transfer per unit length q', passing through the cladding in terms of à, and ri. b) Determine an expression for T, the temperature of the cladding at ri and also for To at ro. c) Calculate these cladding temperatures in °C when ri and ro are 3 mm and 5 mm, q, = 200 kW/m³, kc = 0.15 W/m/K, T = 20°C and h= 20 W/m²/K. Conducting rod, å, k, Cladding, k d) Calculate the critical radius. To decrease the internal cladding temperature would it be necessary to increase or decrease ro; or should it remain unchanged? Explain. To, h 201arrow_forwardHow does equation (1) derived to equation (2) and (3)arrow_forwardb. A large potato is dropped into a pot of boiling water and allowed to boil for half an hour. Which type of system does this represent Lumped or distributed parameter? Provide a reason for your choice .. Comment on temperature distributions. (ii.)arrow_forward
- Hello Sir, Good Evening. I have a question in my homework related Heat Transfer lesson. The following below is my question. Please Advice. Thank You "In the steady conduction process, the heat transfer process occurs due to a temperature difference. If we analyze a conductive heat transfer in a gas pipe that is used to convey hot gas, the heat transfer occurs from the hot gas out of the pipe radially. To reduce the rate of heat transfer, what can we do?"arrow_forwardYou have been asked to cook a 6 kg joint of beef in a conventional oven preheated to 200°C. The joint of meat is roughly spherical and therefore the joint can be modelled as a uniform sphere. i) Normal cooking times for beef state you should cook for at least 60 minutes per kg plus an additional 30 minutes. Estimate the normal cooking time for the beef. ii) Estimate the heat flux into the joint needed to raise the temperature of the joint from 25 °C to a minimum cooked temperature of 70 °C. Given: a. The heat capacity for beef is: 1. 67 kJ/kg/K. b. The density of beef is 1033 k/m'. iii) Assuming only heat transfer occurs through a solid, calculate the rate of accumulation of heat in the meat. iv) Derive a simple expression for the temperature profile in the radial direction through the meat. Given: a. The thermal conductivity of the beef is 0.45 W/m/K. v) Calculate the minimum time needed to reach the minimum temperature of 70 °C using your expression. vi) Compare your answer in part…arrow_forwardPlease don't provide handwritten solution ....arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license