Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.89P
(a)
To determine
The sketch of temperature distribution on T-x coordinates.
The key features of the distribution.
The location of the maximum temperature in the wall.
The value of temperature.
(b)
To determine
The sketch of temperature distribution on
The key features of this distribution.
(c)
To determine
The temperature difference between the two walls at
(d)
To determine
The location of the maximum temperature.
The maximum temperature in composite wall.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 0.6-cm-diameter mild steel rod at 38°C is suddenly immersed in a liquid at 93°C with h=110 W/m2 K. Determine the time required for the rod to warm to 88°C. Thermal conductivity (k) = 43 W/(m K); Specific heat (c) = 473 J/(kg K); Density = 7801 kg/m3 Thermal diffusivity (α) = 1.172 *10–5 m2/s.
The rectangular wall of a furnace consists of 3in. fire clay brick surrounded by 0.25in. of steel on the outside. There are six 0.25in.diameter mild steel bolts per square foot connecting the steel and the brick. The furnace is surrounded by 70°F air (with a film coefficient of 1.65 Btu/hr-ft²-°F), while the inner surface of the brick is maintained at a constant 1000°F. Determine the heat flux per square foot through this wall?
The author and his then 6-year-old son have conducted the following experiment to determine the thermal conductivity of a hot dog. They first boiled water in a large pan and measured the temperature of the boiling water to be 94°C, which is not surprising, since they live at an elevation of about 1650 m in Reno, Nevada. They then took a hot dog that is 12.5 cm long and 2.2 cm in diameter and inserted a thermocouple into the midpoint of the hot dog and another thermocouple just under the skin. They waited until both thermocouples read 20°C, which is the ambient temperature. They then dropped the hot dog into boiling water and observed the changes in both temperatures. Exactly 2 min after the hot dog was dropped into the boiling water, they recorded the center and the surface temperatures to be 59°C and 88°C, respectively. The density of the hot dog can be taken to be 980 kg/m3, which is slightly less than the density of water, since the hot dog was observed to be floating in water while…
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The inner and outer surface temperatures of a 1-D slab of material, with a thickness of 4.2 inches, are 180.0°F and 63.0°F respectively. Determine the heat flux through the material in units of BTU/(hr-ft2) if the material is: a) Stainless steel, k = 8.95 BTU/(hr-ft-°F) b) Aluminum, k = 131 BTU/(hr-ft-°F) c) Soil, k = .30 BTU/(hr-ft-°F)arrow_forwardHeat transferarrow_forwardA 200mm diameter spherical steel ball initially at 500°C is rapidly immersed in an oil bath that is at 20°C. The convection coefficient is h = 600W/m²-K, and the steel ball has the following properties: c= 500J/kg-K, p= 7000kg/m³, k=30W/m-K. Determine the time taken (min) for temperature at the surface of the ball to drop to 100°C.arrow_forward
- A sphere of 80 mm diameter (k=50 W/m.K and α=1.5x10-6 m2/s) is initially at a uniform, elevated temperature, and is quenched in an oil bath maintained at 30 °C. The convection coefficient for the cooling process is 1100 W/m2K. At a certain time, the surface temperature of the sphere is measured to be 120 °C. What is the corresponding center temperature of the sphere?arrow_forwardimage 109arrow_forwardNeed answer ASAP! Thank you Water at 5°C is being used to cool apples from an initial temperature of 25° to 10°C. Thewater flow over the surface of the apple creates a convective heat-transfer coefficientof 10 W/(m2-K). Assume the apple can be described as a sphere with an 8 cm diameterand the geometric center is to be reduced to 10°C. The apple properties include thermalconductivity of 0.4 W/(m-K), specific heat of 3.950 kJ/(kg-K), and density of 940 kg/m3 a. Determine the time that the apples must be exposed to the water.b. If the apple is submerged only for 2 hours, what will be its center temperature?arrow_forward
- During transient operation, the steel nozzle of a rocket engine must not exceed a maximum allowable operating temperature of 1500 K when exposed to combustion gases characterized by a temperature of 2300 K and a convection coefficient of 5000 W/m².K. To extend the duration of engine operation, it is proposed that a ceramic thermal barrier coating (k = 10 W/m-K, α = 6 × 106 m²/s) be applied to the interior surface of the nozzle. (a) If the ceramic coating is 10 mm thick and at an initial temperature of 300 K, obtain a conservative estimate of the maximum allowable duration of engine operation, in s. The nozzle radius is much larger than the combined wall and coating thickness. (b) Determine the inner (x = 0) and outer(x = L) surface temperatures, in °C, of the coating at time t = 30 seconds.arrow_forwardHEAT TRANSFER A mild steel steam pipe with an outer diameter of 11.43 cm and inner diameter of 10.226 cm is covered with 2.5 cm layer of 85% magnesia. The outer surface temperature is 65°C. Determine the heat loss per hour per meter of the pipe. Assuming that the steam is saturated at the pressure of 1.14 MPa, its temperature is 185.68°C. k (steel) = 55.4; k (magnesia, 85%) = 0.0727 W/m-Karrow_forward2 A vertical furnace wall is made up of an inner of firebrick 20 cm thick followed by insulating brick 15 cm thick and an outer wall of steel 1 cm thick. The surface temperature of the wall adjacent to the combustion chamber is 1,200°C while that the outer surface of steel is 50°C. The thermal conductivities of the wall material in W/m-K are: firebrick, 10; insulating brick, 0.26; and steel, 45. Neglecting the film resistances and contact resistance joints, determine the heat loss per sq. m. of wall area.arrow_forward
- A food product with 73% moisture content in a 10 cm diameter can wants to be frozen. The density of the product is 970 kg / m³, the thermal conductivity is 1.2 W / (m K), and the initial freezing temperature is -2.25 ° C. After 15 hours in the freezing medium -35 ° C, the product temperature becomes -10 ° C. Estimate the convection heat transfer coefficient of the freezing medium. Assume the can as an infinite cylinder. h = .... W / (m² K).arrow_forwardA 0.5-ampere current is flowing through a long electrically conducting cylindrical rod. The diameter of the rod is 6 mm, the electrical resistance of the rod is R = 2000 /m, and k =0.9 W/m K for the rod. The rod is encased in a 2-mm thick Pyrex tube and a 20°C liquid is flowing over the outer surface of the Pyrex tube. The convection heat transfer coefficient for the liquid h= 800 W/m2 . K. The interfacial conductance (contact resistance) at the interface between the rod and the Pyrex tube is h = 1200 W/m² - K. a) Compute the rate of heat generation in the rod and use it compute the volumetric rate of heat generation. b) Find the temperature drop across the interface between the outer surface of the rod and the inner surface of the Pyrex tube. c) Find the temperature at the center of the rod.arrow_forwardPlease fats. The answer in the box is incorrectarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license