Introduction to Heat Transfer
Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.1P

Consider the plane wall of Figure 3.1, separating hot andcold fluids at temperatures T , 1 and T , 2 , respectively.Using surface energy balances as boundary conditions at x = 0 and x = L (see Equation 2.34), obtain the temperaturedistribution within the wall and the heat flux interms of T , 1 , T , 2 , h 1 , h 2 , k , and L.

Expert Solution & Answer
Check Mark
To determine

The temperature distribution within the wall and the heat flux.

Answer to Problem 3.1P

The temperature distribution: T(x)=(T ,1T ,2)[1 h 1+1 h 2+Lk][xk+1h1]+T,1

The heat flux: qx"=(T ,1T ,2)[1 h 1+1 h 2+Lk]

Explanation of Solution

Given information:

Temperature of hot fluid is T,1.

Temperature of cold fluid is T,2.

Figure of the plane wall:

  Introduction to Heat Transfer, Chapter 3, Problem 3.1P , additional homework tip  1

Calculations:

  Introduction to Heat Transfer, Chapter 3, Problem 3.1P , additional homework tip  2

From the general solution of the heat diffusion equation:

   T( x )= C 1 x+ C 2     ................( 1 )

   where  C 1  and  C 2  are constants of integration.

   Now applying the surface energy balance conditions:

   At x=0:  [  -k dT dt ] x=0 = h 1 [ T ,1 T( 0 ) ]    .................( 2 )

   At x=L:  [  -k dT dx ] x=L = h 2 [ T( L ) T ,2 ]    .................( 3 )

   From equation ( 1 ) and ( 2 ) with x=0:

   k( C 1 +0 )= h 1 [ T ,1 ( C 1 0+ C 2 ) ]    .................( 4 )

   And,from equation ( 1 ) and ( 3 ) with x=L:

   k( C 1 +0 )= h 2 [ ( C 1 L+ C 2 ) T ,2 ]    .................( 5 )

   Solving equation ( 4 ) and ( 5 )  for C 1  and C 2 :

   C 1 = ( T ,1 T ,2 ) k[ 1 h 1 + 1 h 2 + L k ]

   and,   C 1 = ( T ,1 T ,2 ) h 1 [ 1 h 1 + 1 h 2 + L k ] + T ,1

Substituting in equation (1), the temperature distribution is:

  T(x)=(T ,1T ,2)[1 h 1+1 h 2+Lk][xk+1h1]+T,1

Now find the heat flux using the fourier’s law:

  qx"=kdTdxor,qx"=kC1qx"=k( ( T ,1 T ,2 ) k[ 1 h 1 + 1 h 2 + L k ])qx"=( T ,1 T ,2 )[ 1 h 1 + 1 h 2 + L k]

Conclusion: The temperature distribution within the wall is T(x)=(T ,1T ,2)[1 h 1+1 h 2+Lk][xk+1h1]+T,1 and the heat flux is qx"=(T ,1T ,2)[1 h 1+1 h 2+Lk] .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A:Find the amount of heat transferred through an iron fin of thickness 5 mm, length 10 cm and width 100 cm. Also determine the temperature difference e at the tip of the fin at: 1- adiabatic tip, 2-heat convection at the tip. Assuming the atmospheric temperature of 28°C K=50 w/mK, h=10 w/m’K, O,=80°C. B-Why is the dimensional heat flow assumption important in the analysis of fins problems? C- Why are the annular fins more efficiency than others?.
Suppose that a rod of length 150 cm is immersed in steam untill it's temperature is uo =2720c.At time t = 0,its lateral surface is insulated and its two ends are imbedded in ice at 0°C.Calculate the rod's temperature at at point on the rod at a distance x-95cm after 32 seconds ,for thermal diffisuvity K3D0.005.
Answers given are correct

Chapter 3 Solutions

Introduction to Heat Transfer

Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license