Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.27P
(a)
To determine
The sketch of thermal circuit corresponding to steady state.
(b)
To determine
The chip surface temperature.
(c)
To determine
The maximum allowable heat flux and the value of heat flux when
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problems
within the wall is T(x) = a(L- ) +b where
a = 10°C/m2 and b 30°C, what is the thermal con-
ductivity of the wall? What is the value of the convec-
tion heat transfer coefficient, h?
2.11 Consider steady-state conditions for one-dimensional
conduction in a plane wall having a thermal conductiv-
ity k 50 W/m K and a thickness L = 0.25 m, with no
internal heat generation.
2.
T2
T1
L
Determine the heat flux and the unknown quantity for
each case and sketch the temperature distribution, indi-
cating the direction of the heat flux.
2
Case
TC)
dTldx (K/m)
T2(°C)
1
50
-20
2
-30
- 10
3
70
160
4
40
-80
5
30
200
I am struggling with this question.
Part a and b
Q2. Steam pumped through a long-
insulated pipe at a temperature of
T= 500 K and provides a convection
coefficient of h, = 100 W/m?K at the inner
surface of the pipe. The inner and outer
radius of the pipe and insulation material
are r1 = 10, r2 = 12 and r3 = 17 cm,
respectively. The thermal conductivity of
the pipe is 100 W/mK. The insulation
material is glass fiber and its outer surface
is exposed to ambient air at 300 K. If the ambient air provides a convection coefficient of ho = 20
Internal flow
Ambient air
W/m?K, determine the followings:
a. What are the thermal resistance coefficients for convections and conductions
b. What is the heat transfer rate per unit length of the pipe
c. If the pipe is 30 m long, what will be total heat transfer rate from the pipe.
t00 noints)
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.30 An electrical heater capable of generating 10,000 W is to be designed. The heating element is to be a stainless steel wire having an electrical resistivity of ohm-centimeter. The operating temperature of the stainless steel is to be no more than 1260°C. The heat transfer coefficient at the outer surface is expected to be no less than in a medium whose maximum temperature is 93°C. A transformer capable of delivering current at 9 and 12 V is available. Determine a suitable size for the wire, the current required, and discuss what effect a reduction in the heat transfer coefficient would have. (Hint: Demonstrate first that the temperature drop between the center and the surface of the wire is independent of the wire diameter, and determine its value.)arrow_forward1.37 Mild steel nails were driven through a solid wood wall consisting of two layers, each 2.5-cm thick, for reinforcement. If the total cross-sectional area of the nails is 0.5% of the wall area, determine the unit thermal conductance of the composite wall and the percent of the total heat flow that passes through the nails when the temperature difference across the wall is 25°C. Neglect contact resistance between the wood layers.arrow_forward2.38 The addition of aluminum fins has been suggested to increase the rate of heat dissipation from one side of an electronic device 1 m wide and 1 m tall. The fins are to be rectangular in cross section, 2.5 cm long and 0.25 cm thick, as shown in the figure. There are to be 100 fins per meter. The convection heat transfer coefficient, both for the wall and the fins, is estimated to be K. With this information determine the percent increase in the rate of heat transfer of the finned wall compared to the bare wall.arrow_forward
- A steel duct whose internal diameter is 5.0 cm, and external diameter is 7.6 cm and thermal conductivity is: k = 15.0 (W/(m ºC)) is covered with an insulating material whose thickness is 2.0 cm and of thermal conductivity k = 0.2 (W/(m ºC)). A hot gas flows through the interior of the duct at a temperature of 330.0 ºC that generates a heat transfer coefficient by forced convection h=400.0 (W/(m^2 · ºC)). The outer surface of the insulating layer is exposed to air whose temperature is 30.0 ºC with forced convection heat transfer surface h = 60.0 (W/(m^2 · °C)). As a process engineer and in charge of company operations, you have been asked to: i. Determine the heat loss experienced by the pipe along 10.0 m.ii. The temperature drops that are generated in the different thermal resistances of the system. That is, on the air side, the duct wall and on the hot gas side.arrow_forwardQ1: Consider one-dimensional conduction in a plane composite wall (Im x Im) as shown in the figure below. The outer surfaces are exposed to a fluid at 25°C and a convection heat transfer coefficient of 1000 W/m K. The middle wall B experiences uniform heat generation dg, while there is no generation in walls A and C. The temperatures at the interfaces are T=261°C and T; -211°C. Assuming negligible contact resistance at the interfaces: A) Determine the outside surface temperature of walls A and C? B) Compute the value of dg? (20 M) A B. ーム k= 25 Wim-K A = 50 W/m-K L = 30 mm Le= 30 mm L = 20 mm %3Darrow_forward2. A steel plate of k=50w/mk and thickness 10cm passes a heat flux by conduction of 25kW/m² . If the temperature of hot surface of plate is 100C, then what is the temperature of the cooler side of plate?arrow_forward
- Stainless steel pipes with a thermal conductivity of 17 W/ (m° C) are used to transport hot oil. The temperature inside the tube is 130 ° C. The inner diameter of the pipe is 8 cm and the thickness of the pipe wall is 2 cm. The pipe is then insulated with 4 cm thick insulation with a thermal conductivity of 0.035 W / (m° C). The ambient temperature of the pipe is 25 ° C. Calculate the temperature between the steel and the insulation if we assume a steady state. A picture of the pipe can be seen below.arrow_forwardQ2 fin made of AL metal with thermal conductivity (199 W / mK). Fin dimensions 3 cm long and 2.5 mm thick, extending from a wall and exposed to air at the end. Wall temperature 420 ° C and air temperature 25 ° C. Calculate the heat loss from the fin and the fin efficiency. Assume the heat transfer coefficient of 10 W / m K and neglect the heat loss at the fin tip. Explain the importance of assuming isolated n fin end in practicearrow_forwarda. The wall of a building has a surface area of 50 m2. The outside layer of the wall is 20 cm thick concrete with thermal conductivity kcon = .8 W/m-K. The inner layer is 10 cm thick balsa wood (kbalsa = .048 W/m-K) as an insulator. Outside temperatures of 47o C are expected, while an inside temperature of 21o C is maintained by the cooling system. Find the rate of heat transfer through the wall.arrow_forward
- Consider a plate whose thickness is 2L=20 cm and thermal conductivity is 20 W/mK. Heat generation inside the plate (104 W/m³) is uniform. The plate is placed in an environment at T=20°C and convective heat transfer coefficient is h=16 W/m²K. Find the temperature at the center of plate. h To -L O a. 45 °C O b. 75 °C O c. 67 °C O d. 85 °C О е. 90 °Сarrow_forwardHeat is produced in a long resistance wire q.u= 1.5 W/cm3. The radius of the wire is given as r1=0.3 cm and the thermal conductivity coefficient as ksteel=18 W/m.K. In addition, the wire is covered with a 0.4 cm thick plastic layer with a thermal conductivity coefficient of kplastic = 1.8 W/m.K. The outer surface of the plastic layer loses heat with an average heat transfer coefficient of h=14/W/m2K and by convection to the ambient air at T∞ =250 C. Considering the interface temperature as T1 and accepting the heat transfer as one-dimensional;arrow_forwardA plane wall of thickness 2L=40 mm and thermal conductivity k=5 W/m·K experiences uniform volumetric heat generation at a rate q, while convection heat transfer occurs at both of its surfaces (x=-L, +L), each of which is exposed to a fluid of temperature T=20 °C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a+bx+cx² where a = 82.0 °C, b=-210 °C/m, c = -2x10 °C/m², and x is in meters. The origin of the x- coordinate is at the midplane of the wall. -L x -L (a) Determine the surface heat fluxes, qx(-L) and qx(+L). (b) What is the volumetric rate of heat generation & in the wall? (c) What is the convection heat transfer coefficient for the surfaces at x = +L? (d) Obtain an expression for the heat flux distribution q (as a function of x). Is the heat flux zero at any location? (e) If the source of the heat generation is suddenly deactivated (i. e. q = 0), what temperature will the wall eventually reach with q = 0?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license