Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.150P
(a)
To determine
The maximum allowable chip power dissipation
(b)
To determine
The effect of changes.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A liquid is heated from 20 to 70 oC as it flows at 0.025 kg/s through a steel tube of 10 mm and 12m long. A uniform heat flux is maintained on the tube surface. Using the following liquid properties ρ = 1000 kg/m3, Cp = 4100 J/kg.K, k = 0.45 W/m.K, Pr = 10, μ = 2x10-3 kg/s.m.
Calculate the average heat flux on the tube.
Calculate the heat transfer coefficient at end of tube
Calculate the surface temperature at exit and the heat transfer coefficient for first 1m of pipe?
Q1: In a process water at 30°C flows over a plate maintained at 10 °C with a
free stream velocity of 0.3 m/s. Determine the hydrodynamics boundary
layer thickness, thermal boundary layer thickness, local and average values
of heat transfer coefficient and refrigeration necessary to maintain the plate
temperature. Consider a plate of 1m x 1m size. At the film temperature the
property values are: Kinematic viscosity 1.006 x 106 m²/s, Thermal
conductivity =0.5978 W/m.K, Prandtl number=7.02.
=
Liquid ammonia is transported from a production plant to a processing center via a 0.6-m diameter pipeline
at a mass flow rate of 0.15 kg/s. Surface temperature of the pipe is maintained 0°C by using a cooling jacket
with ice-cold water. Ammonia enters the pipeline at -17°C and exits at -3°C. Assume the flow is both
hydrodynamically and thermally fully developed in the pipe. What is the length of the pipe?
1857m
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Ethylene glycol at 40°C flows over a heated plate very wide, 6 m long, at velocity of 0.04 m/s. For a temperature = 90°C, determine: 1- the thickness of the hydrodynamic boundary layer at the end of the plate2- the thickness of the thermal boundary layer at the end of the plate3- the local and average heat transfer coefficient at the end of the plate4- the total heat flux transferred from the heated surface.arrow_forward3. Consider two large isothermal plates separated by 2-mm thick oil film. The upper plate moves as a constant velocity of 12 m/s, while the lower plate is stationary. Both plates are maintained at 24 °C. a. Obtain relations for the velocity and temperature distribution in the oil b. Determine the maximum temperature in the oil and the heat flux from the oil to each plate. Properties: k= 0.145 W/mK µ= 0.8374 kg/ms =0,8374 Ns/m?arrow_forwardAir at 1 atm and 300 °C is cooled as it flows at a velocity of 5.0 m/s through a tube with a diameter of 2.54 cm. Calculate the heat transfer coefficient if a constant heat flux condition is maintained at the wall and the wall temperature is 20 °C above the temperature along the entire length of the tube. (see attached)arrow_forward
- Water from an industrial process flows through a long pipe of diameter 0.2m at a mass flow of 1.25 kg/s. The surface of the pipe is held at a constant temperature of 10°C. How long must the pipe be if the water enters at 83°C is desired to be cooled to 25°C? Be sure to justify the validity of your chosen correlation.arrow_forwardHeat Transfer with a Liquid Metal. The liquid metal bismuth at a flow rate of 2.00 kg/s enters a tube having an inside diameter of 35 mm at 425°C and is heated to 430°C in the tube. The tube wall is maintained at a temperature of 25°C above the liquid bulk temperature. Calculate the tube length required. The physical properties are as follows (H1): k = 15.6 W/m K, c,=149 J/kg K, u = 1.34 x 10-3 Pa s.arrow_forwardA pure copper cube 3 cm on each side is placed in a 15°C stream of water.If the initial temperature of the cube is initially at 215°C, how long does it take the cube to drop to 25°C? The convective heat transfer coefficient is 80W/m2∙K. Justify any assumptions.arrow_forward
- Experiments have been conducted on a metallic cylinder 12.7 mm in diameter and 94 mm long. The cylinder is heated internally by an electrical heater and is subjected to a cross flow of air in a low-speed wind tunnel. Under a specific set of operating conditions for which the upstream air velocity and temperature were maintained at V = 10 m/s and 26.2°C, respectively, the heater power dissipation was measured to be P = 46 W, while the average cylinder surface temperature was determined to be T, = 128.4°C. It is estimated that 15% of the power dissipation is lost through the cumulative effect of surface radiation and conduction through the endpieces. Thermocouple for measuring airstream temperature Pitot tube for determining velocity Wind tunnel Power leads to electrical heater Heated cylinder Insulated endpiece Thermocouple leads 1. Determine the convection heat transfer coefficient from the experimental observations. 2. Compare the experimental result with the convection coefficient…arrow_forwardParrow_forwardAir at 1 atm and 20°C is flowing over the top surface of a 0.2 m x 0.5 m-thin metal foil. The air stream velocity is 100 m/s and the metal foil is heated electrically with a uniform heat flux of 6100 W/m2. If the friction force on the metal foil surface is 0.3 N, determine the surface temperature of the metal foil Evaluate the fluid properties at 100°C. Air, T 20°C Metal foil 4eler = 6100 W/m?arrow_forward
- Air at a pressure of 1 atm. abs. and 50°C flows parallel to the top surface of a rectangular plate, 2 m x 9 m. Its temperature is maintained at 150°C. The air velocity is 8 m/s. If the critical Re no. is 106, determine the rate of heat transfer from the plate if the air flows parallel to (i) the 2 m long side (ii) the 9 m long sidearrow_forwardCan you please help solve the problem shown? Thank you!arrow_forwardA brass rod 125.00 mm long and 5.00 mm in diameter extends horizontally from a casting at 200°C. The rod is in an air environment with T = 20°C and h = 30W/m2.K. What is the temperature of the rod 31.25, 62.50, and 125.00 mm from the casting? T31.25 = i °C T62.50 = i °C T125.00 i °C %3Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license