Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.52P
(a)
To determine
The electrical power required for
(b)
To determine
Temperature at the center of cylinder B.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A cylindrical electrical heating element is used to heat up a baking oven. The heating element bears a voltage of 120 V/m, and has an electrical resistance of 1000 Ω/m. A ceramic pipe of inside radius rin = 2 mm, and outside radius rout = 5 mm encases the heating element. Thermal conductivity of the ceramic is k = 0.2 W/m-K. Given that the oven air temperature is T∞ = 180oC and convection coefficient h = 10 W/m2-K, find the temperature on the inside of the ceramic pipe.
Stainless steel pipes with a thermal conductivity of 17 W/ (m° C) are used to transport hot
oil. The temperature inside the tube is 130 ° C. The inner diameter of the pipe is 8 cm and
the thickness of the pipe wall is 2 cm. The pipe is then insulated with 4 cm thick insulation
with a thermal conductivity of 0.035 W / (m° C). The ambient temperature of the pipe is 25
° C. Calculate the temperature between the steel and the insulation if we assume a steady
state. A picture of the pipe can be seen below.
A cylindrical reactor made of copper with a radius of a= r=5mm has a heat conduction coefficient of k=386 W/moC, and there is heat generation at e ̇= (q ) ̇= 4x10^8 W/m3 inside this reactor. The cylindrical reactor convection heat transfer coefficient is h=2000 W/m0C and 〖T_(ambient= ) T〗_∞= 30 oC by convection, it cools down from the reactor surface to the center. According to the given boundary conditions
a)Find the reactor surface temperature and the temperature T(a) at r=a. (VARIABLES: r=1-10mm, T_∞= 0-100oC)
b) q(a) =((q ) ̇ * a )/ 2 = (e ̇ * a )/ 2 then find the heat flux amount in kW/m2
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.10 A heat flux meter at the outer (cold) wall of a concrete building indicates that the heat loss through a wall of 10-cm thickness is . If a thermocouple at the inner surface of the wall indicates a temperature of 22°C while another at the outer surface shows 6°C, calculate the thermal conductivity of the concrete and compare your result with the value in Appendix 2, Table 11.arrow_forward2.38 The addition of aluminum fins has been suggested to increase the rate of heat dissipation from one side of an electronic device 1 m wide and 1 m tall. The fins are to be rectangular in cross section, 2.5 cm long and 0.25 cm thick, as shown in the figure. There are to be 100 fins per meter. The convection heat transfer coefficient, both for the wall and the fins, is estimated to be K. With this information determine the percent increase in the rate of heat transfer of the finned wall compared to the bare wall.arrow_forward2.30 An electrical heater capable of generating 10,000 W is to be designed. The heating element is to be a stainless steel wire having an electrical resistivity of ohm-centimeter. The operating temperature of the stainless steel is to be no more than 1260°C. The heat transfer coefficient at the outer surface is expected to be no less than in a medium whose maximum temperature is 93°C. A transformer capable of delivering current at 9 and 12 V is available. Determine a suitable size for the wire, the current required, and discuss what effect a reduction in the heat transfer coefficient would have. (Hint: Demonstrate first that the temperature drop between the center and the surface of the wire is independent of the wire diameter, and determine its value.)arrow_forward
- A cylindrical pipe is made up of two materials. The inner material A, which has thermal conductivity of ka, has inner radius ra and outer radius re. On the other hand, the outer material B, which has thermal conductivity of kb, has inner radius re and outer radius rb. Contact resistance between the two materials is known to be hc. The temperature at the inner radius of material A (at ra) is Ta, while the temperature at the outer radius of material B (at ri) is T3. Find an expression for the temperature at the inner radius of material B (at r.) in terms of the given variables.arrow_forwardProblem # 2 Heat Generation in a Solid A long homogeneous resistance wire of radius ro = 5 mm is being used to heat the air in a room by the passage of electric current. Heat is generated in the wire uniformly at a rate of g = 5 x 107 W/m³ as a result of resistance heating. If the temperature of the outer surface of the wire remains at 180°C, determine the temperature atr= 2 mm after steady operation conditions are reached. Take the thermal conductivity of the wire to be k = 8 W/m · °C. Answer: 212.8°C 180°C rol -.-.- Resistance wirearrow_forward10 hot rods (L = 5 m and d = 2 cm) are buried in the ground parallel to each other each rod is 10 cm apart and at a depth 3 m from the ground surface. The thermal conductivity of the soil is 0.6 W/m K. If the surface temperature of the rods and the ground are 600 K and 30 °C, respectively. Draw the figure and determine the rate of heat transfer from the fuel rods to the atmosphere through the soilarrow_forward
- Please help solve the following heat transfer problem. You are to use a resistance model in your solution. Thank you.arrow_forward2. A steel plate of k=50w/mk and thickness 10cm passes a heat flux by conduction of 25kW/m² . If the temperature of hot surface of plate is 100C, then what is the temperature of the cooler side of plate?arrow_forwardQ1: In a nuclear reactor, heat is generated uniformly in the 5-cm-diameter cylindrical uranium rods at a rate of 7 x 10' W/m. If the length of the rods is 1 m, determine the rate of heat generation in each rod. Answer: Q=137.4 kW Q2: Write down the one-dimensional transient heat conduction equation for a plane wall with constant thermal conductivity and heat generation in its simplest form, and indicate what each term represents. Also, what is the units of every term? Q3: Consider a spherical container of inner radius r1, outer radius r2, and thermal conductivity k. Express the boundary condition on the inner surface of the container for steady one dimensional conduction for the following cases: (a) specified temperature of 50°C, (b) specified heat flux of 30 W/m² toward the center, (c) convection to a medium at T with a heat transfer coefficient of h. Q4: Heat is generated in a long wire of radius ro at a constant rate of go per unit volume. The wire is covered with a plastic…arrow_forward
- Consider a large plane wall of thickness L = 0.4 m, thermal conductivity k=2.3 W/m °C,and surface area A= 20 m2. The left side of the wall at x= 0 is subjected of T1 = 80 C. while the right side losses heated by convection to the surrounding air at Too=15 C with a heat transfer coefficient of h=24 W/m2 .C. Assuming constant thermal conductivity and no heat generation in the wall, (a) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, (b) obtain a relation for the variation of temperature in the wall by solving the differential equation, and (c) evaluate the rate of heat transfer through the wallarrow_forwardCalculate the overall heat transfer coefficient of the steel pipe based on the inner surface. The inner diameter of the pipe is 12.7 cm, and the thickness of the pipe is 2.4 cm. The convective heat transfer coefficient in the pipe is 350 W / (m² °C), the convective heat transfer coefficient outside the pipe is 25 W / (m² °C), the thermal conductivity of the steel pipe is 15 W / (m °C) . If a pipe is used to deliver steam at 110 °C and the ambient temperature is 30 °C, determine the rate of heat transfer from the pipe per meter. q = AnswerWatts/marrow_forwardA cylindrical tank is constructed from aluminum (kal = 240 W/m2.K) with 1 m inner diameter and 10 mm thick. The tank having uniform volumetric heat generation of 1 MW/m3. The outer surface of the tank is covered with a 5 mm thick layer of stainless steel (kst = 15 W/m2.K). The heat transfer from the tank is assumed to the radial direction only as the both cross sections of the tank are properly insulated. It is proposed to submerge the tank into oceanic water at 20˚C flowing at a velocity of 0.5 m/s. The properties of the oceanic water are kwater = 0.606 W/m.K, ρ = 1000 kg/m3, μ = 959 x 10-6 N.s/m2, Pr = 6.62. Analyze the acceptability of the proposal if the melting point of aluminum is 667˚C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license