In Section 5.5, the one-term approximation to the series solution for the temperature distribution was developed for a plane wall of thickness 2L that is initially at a uniform temperature and suddenly subjected to convection heat transfer. If
(a) Determine the midplane,
(b) Treating the wall as a lumped capacitance, calculate the temperatures at
(c) Consider the 2- and 5-node networks shown schematically. Write the implicit form of the finite-difference equations for each network, and determine the temperature distributions for
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Introduction to Heat Transfer
- The initial temperature distribution of a 5 cm long stick is given by the following function. The circumference of the rod in question is completely insulated, but both ends are kept at a temperature of 0 °C. Obtain the heat conduction along the rod as a function of time and position ? (x = 1.752 cm²/s for the bar in question) 100 A) T(x1) = 1 Sin ().e(-1,752 (³¹)+(sin().e (-1,752 (²) ₁ + 1 3π TC3 .....) 100 t + ··· ....... 13) T(x,t) = 200 Sin ().e(-1,752 (²t) + (sin (3). e (-1,752 (7) ²) t B) 3/3 t + …............) C) T(x.t) = 200 Sin ().e(-1,752 (²t) (sin().e(-1,752 (7) ²) t – D) T(x,t) = 200 Sin ().e(-1,752 (²)-(sin().e (-1,752 (²7) ²) t E) T(x.t)=(Sin().e(-1,752 (²t)-(sin().e(-1,752 (²) t+ t + ··· .........) t +.... t + ··· .........) …..)arrow_forward(a) Consider nodal configuration shown below. (a) Derive the finite-difference equations under steady-state conditions if the boundary is insulated. (b) Find the value of Tm,n if you know that Tm, n+1= 12 °C, Tm, n-1 = 8 °C, Tm-1, n = 10 °C, Ax = Ay = 10 mm, and k = = W 3 m. k . Ay m-1, n m, n | Δx=" m, n+1 m, n-1 The side insulatedarrow_forward(a) Consider nodal configuration shown below. (a) Derive the finite-difference equations under steady-state conditions if the boundary is insulated. (b) Find the value of Tm,n if you know that Tm, n+1= 12 °C, Tm, n-1 = 8 °C, Tm-1, n = 10 °C, Ax = Ay = 10 mm, and k = W 3 m. k Ay m-1, n 11- m2, 11 m, n+1 m, n-1 The side insulatedarrow_forward
- 2. The slab shown is embedded in insulating materials on five sides, while the front face experiences convection off its face. Heat is generated inside the material by an exothermic reaction equal to 1.0 kW/m'. The thermal conductivity of the slab is 0.2 W/mk. a. Simplify the heat conduction equation and integrate the resulting ID steady form of to find the temperature distribution of the slab, T(x). b. Present the temperature of the front and back faces of the slab. n-20- 10 cm IT- 25°C) 100 cm 100 cmarrow_forwardi need the answer quicklyarrow_forward7.3 A 5-cm-thick beef steak is being frozen in a -30°C room. The product has 73% moisture content, density of 970 kg/m, and thermal conductivity (frozen) of 1.1 W/(m K). Estimate the freezing time using Plank's equation. The product has an initial freezing temperature of -1.75°C, and the movement of air in the freezing room provides a convective heat-transfer coefficient of 5 W/(m K).arrow_forward
- A solid cylinder of radius R and length L is made from material with thermal conductivity 2. Heat is generated inside the cylinder at a rate S (energy per unit volume per unit time). (a) Neglecting conduction along the axis of the cylinder, find the steady-state temperature distribution in the cylinder, given that the surface temperature is Ts. (b) Consider a crude approximation of a mouse modeled as a cylinder of radius 1 cm and length 5 cm. If the ambient air temperature is 10°C and the internal rate of heat generation in the animal is 10-³ W/cm³, find the skin temperature (Ts) for the mouse. The external heat-transfer coefficient is h = 0.2 W/m².K. (You can neglect conduction along the axis of the mouse, as in part a.)arrow_forwardPls handwritearrow_forward2. Consider the temperature distributions associated with a dx differential control volume within the one-dimensional plane walls shown below. T(x,00) T\x,00) * dx * dx (a) (Б) Tx,1) T(x,1) * dx dx (c) (d) (a) Steady-state conditions exist. Is thermal energy being generated within the differential control volume? If so, is the generation rate positive or negative? (b) Steady-state conditions exist as in part (a). Is the volumetric generation rate positive or negative within the differential control volume? (c) Steady-state conditions do not exist, and there is no volumetric thermal energy generation. Is the temperature of the material in the differential control volume increasing or decreasing with time? (d) Transient conditions exist as in part (c). Is the temperature increasing or decreasing with time?arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning