Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.86P
To determine
To find the maximum allowable electric current, corresponding length and power rating of the heater.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
quantity.
Example 1/ The roof of an electrically heated home is 6 m long, 8 m
wide, and 0.25 m thick, and is made of a flat layer of concrete whose
thermal conductivity is k 0.8 W/m.°C (Figure. 1-3). The temperatures
of the inner and the outer surfaces of the roof one night are measured to
be 15°C and 4°C, respectively, for a period of 10 hours. Determine the
rate of heat loss through the roof at night.
Concrete roof -
0.25 m
8 m
6 m
4°C
15°C
Figure 1-3 Schematic for Example 1
Q1/ The center to surface
temperature difference in a heat
generating cylindrical rod of 4 m
diameter was 30°C. What is the
difference temperature between
the center and surface in the case
of a sphere of 2 m diameter under
similar conditions? *
Your answer
Q2/ A metal plate of 4mm thickness
(k = 95.5 W/m°C) is exposed to
vapor at 100°C on one side and
cooling water at 25°C on the
opposite side. The heat transfer
coefficients on vapor side and
waterside are 14500 W/m^2°C and
2250 W/m^2 °C respectively.
Determine the overall heat transfer
coefficient *
Your answer
The thermal conductivity of a sheet of rigid, extruded insulation is reported to be k = 0.029 W/m-K. The measured temperature
difference across a 25-mm-thick sheet of the material is T – T2 = 12°C.
(a) What is the heat flux through a 3 m x 3 m sheet of the insulation, in W/m2?
(b) What is the rate of heat transfer through the sheet of insulation, in W?
(c) What is the thermal resistance of the sheet due to conduction, in K/W?
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- One end of a 0.3-m-long steel rod is connected to a wall at 204C. The other end is connected to a wall that is maintained at 93C. Air is blown across the rod so that a heat transfer coefficient of 17W/m2 K is maintained over the entire surface. If the diameter of the rod is 5 cm and the temperature of the air is 38C, what is the net rate of heat loss to the air?arrow_forward1.63 Liquid oxygen (LOX) for the space shuttle is stored at 90 K prior to launch in a spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated with superinsulation developed at the U.S. National Institute of Standards and Technology's Cryogenic Division; the superinsulation has an effective thermal conductivity of 0.00012 W/m K. If the outside temperature is on the average and the LOX has a heat of vaporization of 213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate below 200 g/h.arrow_forward1.1 On a cold winter day, the outer surface of a 0.2-m-thick concrete wall of a warehouse is exposed to temperature of –5°C, while the inner surface is kept at 20°C. The thermal conductivity of the concrete is 1.2 W/m K. Determine the heat loss through the wall, which is 10-m long and 3-m high. Problem 1.1arrow_forward
- (3) A thick steel slab is initially at a uniform temperature of 25°C. When the slab is exposed to hot flue gases, the surface temperature suddenly changes to 450°C. Make calculations for the temperature in a plane 250 mm from the slab surface 5 hours after the operation of change in surface temperature. Find also the heat flowing into 2 square meters of this plane and the total energy flowing through the surface during the 5 hour period. It may be presumed that for steel, thermal conductivity k = 160 kJ/m hr deg, density p = 8000 kg/m3 and the specific heat capacity Cp = 0.48 kJ/kg deg. Activate Windows Go to Settings to activate Win 1:36 7/13 P Type here to search 14117 detete home Snut ort sc 144 & backspace lock E R home enter D G pause esned 1 shift B N M en alt ctriarrow_forward(3) A thick steel slab is initially at a uniform temperature of 25°C. When the slab is exposed to hot flue gases, the surface temperature suddenly changes to 450°C. Make calculations for the temperature in a plane 250 mm from the slab surface 5 hours after the operation of change in surface temperature. Find also the heat flowing into 2 square meters of this plane and the total energy flowing through the surface during the 5 hour period. It may be presumed that for steel, thermal conductivity k = 160 kJ/m hr deg, density p = 8000 kg/m³ and the specific heat capacity Cp = 0.48 kJ/kg deg. Activate Windows Settings to actie We 851 PN 7/16/20 O Type here to search delete home 144 0 backspace 8.arrow_forwardQUESTION 3 A steel pipe 150mm external diameter conveys steam at a temperature of 260°C and is covered by two layers of lagging, each 50mm thick. The thermal conductivity coefficient of the inside layer of lagging is 0.0865W/mK while that of the outside layer is 0.0952W/mK. The outside surface temperature of the steel pipe can be taken as being the same temperature of the steam. The ambient temperature is 27°C and the heat transfer coefficient of the outside surface is 15W/m2K. Calculate: 3.1 the heat lost/hr for a pipe length of 30m;arrow_forward
- A 30 mm diameter copper sphere and a 30 mm copper cube are both heated in a furnace to 923 K. They are then annealed in an air at 378K. If the external heat transfer coefficient h is 80 W/m2.K in both cases, what is the temperature of the sphere and of the cube at the end of 6 minutesarrow_forward20-m pipe has an outside diameter of 50 mm. Pipe is insulated with a layer of asbestos, then followed by a layer of cork. Inside and outside diameter of the cork is 77 mm and 80 mm, respectively. If the temperature drop from pipe to cork is 1165°C, calculate the inside diameter of the pipe (mm). The rate of the heat transfer is 8778 W. The thermal conductivity of steam pipe, asbestos and cork are 0.045 kW/m-K, 0.058 W/m-K and 0.043 W/m-K respectively.arrow_forwardThermal treatment of a steel cube, of 10 cm side length, L, requires a two step cooling process. In the first step, the cube at the uniform temperature of 500°C is placed in air where it is cooled to 250°C. In the second step, it is moved to large oil bath of temperature 20°C where the heat transfer coefficient at all surfaces is the same and equal to h = 50 W m-2 K-1. %3D Calculate the total amount of energy lost by the cube and show that the lumped capacitance method can be used to calculate the temperature during the second step of cooling. Calculate the time necessary to reduce the cube temperature to 50°C. Thermal properties Density = 8000 kg m-3 Cp= 480 J kg-1 K-1 k = 30 W m-1 K-1. %3Darrow_forward
- Explore the effect of insulation thickness on the heat loss q and the temperature of the insulation outer surface T2 for a steam pipe of 0.05-m outside diameter that is insulated with a layer of calcium silicate. The temperature of the steam fixed at 600 K and the outer surface is exposed to an airflow (T=30°C) that maintains a heat transfer coefficient of h = 85 W/m².K, which includes the effects of radiation. where r,= 0.025 m and r2 is a variable (0.025 < r2 < 0.50 m). Compute and plot the heat loss and outer surface temperature Ts,2 as a function of the insulation thickness.arrow_forwardThe temperatures on the faces of a plane wall 20 cm thick are 400 and 90 ℃. The wall is constructed of a special glass with the following properties: k = 0.8 W∙m-1K-1, ρ = 2750 kgm-3, cP = 0.86 kJkg-1K-1. What is the heat flux (q") through the wall at steady-state conditions?arrow_forwardPlease show all steps not Ai generated they have been wrong and I need to understand whats goin on. A steel sphere (AISI 1010), 100 mm in diameter, is coated with a dielectric material layer of thickness 2 mm and thermal conductivity 0.04 W/m • K. The coated sphere is initially at a uniform temperature of 500°C and is suddenly quenched in a large oil bath for which To = 100°C and h = 3000 W/m • K. Estimate the time required for the coated sphere temperature to reach 150°C. Hint: Neglect the effect of energy storage in the dielectric material, since its thermal capacitance (pcV) is small compared to that of the steel sphere.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license