Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.77P
To determine
The general expression for the substrate temperature distribution and find the surface temperature of heat source for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 40mm diameter steel rod AB shown in Figure 2 is resting on frictionless rollers
between two steel plates. End A is just touching the left hand steel plate.
2.
Steel plate
Steel plate
A
В
1500mm
1mm
Figure 2
There is a gap of 1mm between the end B and the right hand side steel plate. The
temperature of the rod increases by an amount AT and this increase in temperature
causes the two ends of the rod to press against the steel plates. This action causes the
right hand steel plate to move to the right by 0.5mm while the left hand plate does not
move.
The Young's modulus value for steel is 210,000N/mm?.
Taking any assumptions that you deem necessary calculate the increase in temperature
AT required to cause the rod to buckle.
Find the steady-state temperature distribution in a (very long) solid cylinder if the boundary temperatures are T(s=0, θ, z)=0 and T(s, θ, z=0)=s*sinθ
An ideal mono-atomic gas is confined in a cylinder with the help of a piston that can slide inside the cylinder without friction. The cylinder I placed on a
horizontal platform in a vacuum chamber. The walls of the cylinder and the piston are made of heat insulating materials. Initially the temperature of the
gas is 'T, and the piston stays in equilibrium. The temperature of the gas is quickly increased n times and then the gas is allowed to expand. If the
piston rises and again acquires an equilibrium state, find the temperature of the gas in this new equilibrium state.
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- question A B and Carrow_forwardA rectangular nylon [E = 8 GPa; v = 0.35; d = 29 x 10-6/°C] plate has a circular hole in its center. At an initial temperature of T; = 19°C, the plate width is b = 360 mm, the plate height is h = 190 mm, the diameter of the central hole is d = 55 mm, and the thickness of the plate is t = 21 mm. At a final temperature of T=45°C, determine (a) the diameter d of the central hole. (b) the thickness t of the plate. Answers: (a) df = i (b) t= i b Save for Later d eTextbook and Media mm mm Attempts: 0 of 5 used Submit Answerarrow_forwardDetermine k, thermal conductivity of a wall if q = 1000 kcal/m2 -hr at thickness, k = 33 mm and ∆t = 30°C.arrow_forward
- Question 5: Z=62 a. An iron sphere of mass (Z + 300)g is kept in a container having boiling water (100 °C). If the temperature of the sphere is 25.5°C, how much heat energy is absorbed by the iron sphere? Consider the specific heat of iron as 452J/kg. b. The wall of an industrial furnace is constructed from (Z + 3) cm thick fireclay brick having a thermal conductivity of 1.7 W/mK. Measurements made during steady-state operation reveal temperatures of 530°C and 375°C at the inner and outer surfaces, respectively. Find the rate of heat loss through a wall which is (Z + 5) cm by (Z + 3) m on a side.arrow_forward1. The composite wall of an oven consists of three materials, two of which are of known thermal conductivity, k₁ = 20 W/m • K and kc = 50 W/m • K, and known thickness, L₁ = 0.30 m and Lc = 0.15 m. The third material, B, which is sandwiched between materials A and C, is of known thickness, Lâ = 0.15 m, but the unknown thermal conductivity kú. -Tsp Ts.i KA kB kg kc Air T, h Under steady-state operating conditions, measurements reveal an outer surface temperature of Ts,o = 20°C, an inner surface temperature of T¸¡ = 600°C, and an oven air temperature of T∞ = 800°C. The inside convection coefficient h is known to be 25 W/m² • K. What is the value of k¸? Answer: KB=1.53W/m*Karrow_forwardA thin bar of length L = 3 meters is situated along the x axis so that one end is at x = 0 and the other end is at x = 3. The thermal diffusivity of the bar is k = 0.4. The bar's initial temperature f(x) = 300 degrees Celsius. The ends of the bar (x = 0 and x = 3) are then put in an icy bath and kept at a constant O degrees C. Let u(x, t) be the temperature in the bar at x at timet, with t measured in seconds. Find u(x, t) and then u7 (2, 0.1). Put uz (2, 0.1) calculated accurately to the nearest thousandth (3 decimal places) in the answer box.arrow_forward
- 2-1. Temperature Response in Cooling a Wire. A small copper wire with a diameter of 0.792 mm and initially at 366.5 K is suddenly immersed in a liquid held constant at 311 K. The convection coefficient h 85.2 W/m K. The physical properties can be assumed constant and are k =374 W/m K, c, = 0.389 kJ/kg K, and p = 8890 kg/m2. (a) Determine the time in seconds for the average temperature of the wire to drop to 338.8 K (one-half the initial temperature difference). (b) Do the same but for h 11.36 W/m2 K (c) For part (b), calculate the total amount of heat removed for a wire 1.0 m р u (A long. (a) t 5.66 s Ans. the Smou hire is lons asbume Nhere rraolius , here radlius yinder hitu x Chapter 14 Principles of Unsteady-State Heat Transferarrow_forwardThe inner and outer radii of a hollow cylinder are 15 mm (r, ) and 25 mm (r, ), respectively. The temperatures of the inner and outer walls are 400°C (T,) and 350°C (T,), respectively. The thermal conductivity of the cylinder material obeys the relationship K = (400-0.05T) W/mK where T is in degrees Celsius. Find the heat transferred from the hollow cylinder per unit length. The thermal conductivity,arrow_forwarda metal bar is made up of 3.0 cm of aluminum and 5.0 cm of steel. the free end of the aluminum bar is placed in contact with steam at 100 degree Celsius. at the other side, the free end of the steel bar maintained at 0 degree Celsius by placing it in contact with the ice. find the temperature at the point that connect the aluminum and the steal (junction)arrow_forward
- Two large containers A and B of the same size are filled with different fluids. The fluids in containers A and B are maintained at 0° C and 100° C, respectively. A small metal bar, whose initial temperature is 100° C, is lowered into container A. After 1 minute the temperature of the bar is 90° C. After 2 minutes the bar is removed and instantly transferred to the other container. What is the temperature of the bar at the instant it is transferred?arrow_forward3. A cylindrical pipe of negligible thickness holding a hot fluid at 140°C and having an outer diameter of 0.4 m is insulated with three layers of each 50 mm thick insulation of k₁ = 0.02: k2 = 0.06 and k3 = 0.16 W/m-K (starting from inside). The outside surface temperature is 30°C. Solve for the value of T2 (°C). • show conversions, units, and box in your final answersarrow_forwardMetals A and B were taken out from a boxed furnaces both at 500 degree Celsius. The ambient temperature, weher the metals were exposed is at 25 degree Celsius. It took 1 minute for Metal A to reach 100 degree Celsius. Determine the temperature of Metal B in degree Celsius, 2 minutes after it was tak out from the furnace to the new ambient temperature. It is known that ka= 2kb.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license