Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.98P
(a)
To determine
Temperature distribution for fuel rod and cladding.
(b)
To determine
The maximum temperature in fuel element.
(c)
To determine
To plot: The temperature distribution for different convection.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. a. The heat flux applied to the walls of the biomass combustion furnace is 20 W/m2. The furnace walls have a thickness of 10 mm and a thermal conductivity of 12 W/m.K. If the wall surface temperature is measured to be 50oC on the left and 30oC on the right, prove that conduction heat transfer occurs at a steady state!b. Heating the iron cylinder on the bottom side is done by placing the iron on the hotplate. This iron has a length of 20 cm. The surface temperature of the hotplate is set at 300oC while the top side of the iron is in contact with the still outside air. To reach the desired hotplate temperature, it takes 5 minutes. Then it takes 15 minutes to measure the temperature of the upper side of the iron cylinder at 300oC. Show 3 proofs that heat transfer occurs transiently
How long should it take to boil an egg? Model the egg as a sphere with radius of 2.3 cm that has properties similar to water with a density of = 1000 kg/m3 and thermal conductivity of k = 0.606 Watts/(mC) and specific heat of c = 4182 J/(kg C). Suppose that an egg is fully cooked when the temperature at the center reaches 70 C. Initially the egg is taken out of the fridge at 4 C and placed in the boiling water at 100 C. Since the egg shell is very thin assume that it quickly reaches a temperature of 100 C. The protein in the egg effectively immobilizes the water so the heat conduction is purely conduction (no convection). Plot the temperature of the egg over time and use the data tooltip in MATLAB to make your conclusion on the time it takes to cook the egg in minutes.
=
Consider a large plane wall of thickness L=0.3 m, thermal conductivity k = 2.5 W/m.K,
and surface area A = 12 m². The left side of the wall at x=0 is subjected to a net heat
flux of ɖo = 700 W/m² while the temperature at that surface is measured to be T₁ =
80°C. Assuming constant thermal conductivity and no heat generation in the wall, (a)
express the differential equation and the boundary equations for steady one-
dimensional heat conduction through the wall, (b) obtain a relation for the variation of
the temperature in the wall by solving the differential equation, and (c) evaluate the
temperature of the right surface of the wall at x=L.
Ti
до
L
X
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A steel ball of density 7800 kg/m³ and specific heat 0.47 kJ/kg-K having 10 cm diameter at 300°C is placed in atmosphere at 30°C. Calculate the initial rate of cooling in °C/sec. Assume convective heat transfer coefficient h = 15W / (m ^ 2) - K . Neglect heat loss by radiation.arrow_forwardTHERMODYNAMICS A 1.5kW iron has a 0.5 cm thick brass base plate (p=8,310 kg/m3 and cp = 400 J/kg C) with a surface area of 0.03 m^2. At the start, the iron is in thermal equilibrium with the ambient air temperature of 22 degrees Celsius. What is the shortest time required for the plate temperature to reach 200 degrees Celsius if 95 percent of the heat generated in the resistance wires is transmitted to the plate?arrow_forwardH6arrow_forward
- A plane wall of thickness 2L=40 mm and thermal conductivity k=5 W/m·K experiences uniform volumetric heat generation at a rate q, while convection heat transfer occurs at both of its surfaces (x=-L, +L), each of which is exposed to a fluid of temperature T=20 °C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a+bx+cx² where a = 82.0 °C, b=-210 °C/m, c = -2x10 °C/m², and x is in meters. The origin of the x- coordinate is at the midplane of the wall. -L x -L (a) Determine the surface heat fluxes, qx(-L) and qx(+L). (b) What is the volumetric rate of heat generation & in the wall? (c) What is the convection heat transfer coefficient for the surfaces at x = +L? (d) Obtain an expression for the heat flux distribution q (as a function of x). Is the heat flux zero at any location? (e) If the source of the heat generation is suddenly deactivated (i. e. q = 0), what temperature will the wall eventually reach with q = 0?arrow_forwardA plane wall of thickness 2L = 30 mm and thermal conductivity k = 7 W/m-K experiences uniform volumetric heat generation at a rate q, while convection heat transfer occurs at both of its surfaces (x = − L, + L), each of which is exposed to a fluid of temperature T = 20°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a + bx + cx² where a = 82.0°C, b = -210°C/m, c = -2x 10°C/m², and x is in meters. The origin of the x-coordinate is at the midplane of the wall. (a) What is the volumetric rate à of heat generation in the wall? (b) Determine the surface heat fluxes, q" (L)and q ( + L). (c) What are the convection coefficients for the surfaces at x = - Land x = + L? The volumetric rate of heat generation in the wall, in W/m³: q = i W/m³ The surface heat flux, in W/m²: qx ( - L) = i The surface heat flux, in W/m²: q (+ L) = i W/m² W/m² The convection coefficients for the surface at x = - L, in W/m²-K: h(- L) = i W/m².K The convection…arrow_forwardQ2. Steam pumped through a long- insulated pipe at a temperature of T= 500 K and provides a convection coefficient of h, = 100 W/m?K at the inner surface of the pipe. The inner and outer radius of the pipe and insulation material are r1 = 10, r2 = 12 and r3 = 17 cm, respectively. The thermal conductivity of the pipe is 100 W/mK. The insulation material is glass fiber and its outer surface is exposed to ambient air at 300 K. If the ambient air provides a convection coefficient of ho = 20 Internal flow Ambient air W/m?K, determine the followings: a. What are the thermal resistance coefficients for convections and conductions b. What is the heat transfer rate per unit length of the pipe c. If the pipe is 30 m long, what will be total heat transfer rate from the pipe. t00 noints)arrow_forward
- I need the answer as soon as possiblearrow_forwardA plane wall of thickness 2L = 2*33 mm and thermal conductivity k = 7 W/m-K experiences uniform volumetric heat generation at a rate q˙, while convection heat transfer occurs at both of its surfaces (x = −L, + L), each of which is exposed to a fluid of temperature T∞ = 31°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a + bx + cx2 where a = 85°C, b = −-218°C/m, c = −-23,942°C/m2, and x is in meters. The origin of the x-coordinate is at the midplane of the wall. (a) Sketch the temperature distribution and identify significant physical features. (b) What is the volumetric rate of heat generation q˙ in the wall? (c) Obtain an expression for the heat flux distribution qx″(x). Is the heat flux zero at any location? Explain any significant features of the distribution. (d) Determine the surface heat fluxes, qx″(−L) and qx″(+L). How are these fluxes related to the heat generation rate? (e) What are the convection coefficients…arrow_forward3.4 Estimate the rate of heat loss due to radiation from a covered pot of water at 95 ° C. How does this compare with the 60 W that is lost due only to convection and conduction losses? What amount of energy input would be needed to maintain the water at its boiling point for 30 minutes? The polished stainless steel pot is cylindrical, 20 cm in diameter and 14 cm high, with a tight-fitting flat cover. The air temperature in the kitchen is about 25 ° C. State any assumptions you make in deriving your estimatesarrow_forward
- ANSWER THE QUESTION STEP BY STEP WITH FULL SOLUTION. NO CALCULATOR SHORTCUTS PLEASE.arrow_forwardIn a cylindrical fuel element for a gas-cooled nuclear reactor, the heat generation rate within the fuel element due to fission can be approximated by the relation: g(r) = g_0 [1 - (r/b)^2] W/m^3 where b is the radius of the fuel element and g_0 is constant. The boundary surface at r = b is maintained at a uniform temperature T_0. Assuming one-dimensional, steady-state heat flow, develop a relation for the temperature drop from the centerline to the surface of the fuel element. For radius b = 2 cm, the thermal conductivity k = 10 W/m middot K and g_0 = 2 times 10^7 W/m^3, calculate the temperature drop from the centerline to the surface.arrow_forwardA thermal system having a cylindrical form contains a sequence of cylindrical layers is used to cool hot gases. The thermal properties of the system materials are as follows : k = 231 W/m.K, c = 1033 J/kg.K and the density = 2702 kg/m^3. The gases to be cooled has a temperature equals to 500 C. Determine the temperature of the system that corresponds to 10 % of the maximum possible heat transfer between the gas and the system. Consider that the system has a characteristic length equals to 0.03 m. The heat convective coefficient is equal to 50 W/m^2.K. The initial temperature of the system is equal to 20 C. Select one: О а. 370 К O b. 489 K С. 341 К d. 410 Karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Introduction to Ferrous and Non-Ferrous Metals.; Author: Vincent Ryan;https://www.youtube.com/watch?v=zwnblxXyERE;License: Standard Youtube License