Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
Chapter 3, Problem 3.166P
To determine
The metabolic heat generation rate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For the 21.5-cm thick multilayer assembly as listed below, please estimate the temperature on the interface between material layers 3 and 4
Material layers - counted from the interior side: (1) 1.5 - cm gypsum board; (2) 4.0-cm - concrete of density - 2400-kg/m3; (3) 10-cm of XPS foam; (4) 6.0-cm - concrete of density - 2400-kg/m3
Interior film resistance is Ri = 0.121 m2K/W
Exterior film resistance is Re - 0.029 m2K/W
Internal temperature +20 degC
External Temperature - 20 degC
For the 21.5-cm thick multilayer assembly as listed below, please estimate the temperature on the interface between material layers 3 and 4
Material layers - counted from the interior side: (1) 1.5 - cm gypsum board; (2) 4.0-cm - concrete of density - 2400-kg/m3; (3) 10-cm of XPS foam; (4) 6.0-cm - concrete of density - 2400-kg/m3
Interior film resistance is Ri = 0.121 m2K/W
Exterior film resistance is Re - 0.029 m2K/W
Internal temperature +20 degC
External Temperature - 20 degC
All necessary material properties can be found in the ASHRAE Handbook of Fundamentals, or other sources
Vacuum furnaces are used in manufacturing for metal heating in brazing and sintering processes, as well as for heat treatment of steel alloys. The vacuum, and absence of air/oxygen, facilitates a low contamination process and prevents detrimental surface oxidisation. Heat is often provided in these furnaces by electrical heating elements, and their thermal design is critical to the effective operation of the furnace. In one such case, this element is modelled as a long, cylindrical electrically heated rod, 20 mm in diameter installed in a vacuum furnace as shown. The surface of the heating rod has an emissivity of 0.9 and is maintained at 1000 K, while the interior walls of the furnace are black and are at 800 K. Calculate the net rate at which heat is lost from the rod per unit length.
Chapter 3 Solutions
Introduction to Heat Transfer
Ch. 3 - Consider the plane wall of Figure 3.1, separating...Ch. 3 - A new building to be located in a cold climate is...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - The rear window of an automobile is defogged by...Ch. 3 - A dormitory at a large university, built 50 years...Ch. 3 - In a manufacturing process, a transparent film is...Ch. 3 - Prob. 3.7PCh. 3 - A t=10-mm-thick horizontal layer of water has a...Ch. 3 - Prob. 3.9PCh. 3 - The wind chill, which is experienced on a cold,...
Ch. 3 - Prob. 3.11PCh. 3 - A thermopane window consists of two pieces of...Ch. 3 - A house has a composite wall of wood, fiberglass...Ch. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Work Problem 3.15 assuming surfaces parallel to...Ch. 3 - Consider the oven of Problem 1.54. The walls of...Ch. 3 - The composite wall of an oven consists of three...Ch. 3 - The wall of a drying oven is constructed by...Ch. 3 - The t=4-mm-thick glass windows of an...Ch. 3 - Prob. 3.21PCh. 3 - In the design of buildings, energy conservation...Ch. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - A composite wall separates combustion gases at...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29PCh. 3 - The performance of gas turbine engines may...Ch. 3 - A commercial grade cubical freezer, 3 m on a...Ch. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - A batt of glass fiber insulation is of density...Ch. 3 - Air usually constitutes up to half of the volume...Ch. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - The diagram shows a conical section fabricatedfrom...Ch. 3 - Prob. 3.40PCh. 3 - From Figure 2.5 it is evident that, over a wide...Ch. 3 - Consider a tube wall of inner and outer radii ri...Ch. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - To maximize production and minimize pumping...Ch. 3 - A thin electrical heater is wrapped around the...Ch. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - A wire of diameter D=2mm and uniform temperatureT...Ch. 3 - Prob. 3.54PCh. 3 - Electric current flows through a long rod...Ch. 3 - Prob. 3.56PCh. 3 - A long, highly polished aluminum rod of diameter...Ch. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Consider the series solution, Equation 5.42, for...Ch. 3 - Prob. 3.64PCh. 3 - Copper-coated, epoxy-filled fiberglass circuit...Ch. 3 - Prob. 3.66PCh. 3 - A constant-property, one-dimensional Plane slab of...Ch. 3 - Referring to the semiconductor processing tool of...Ch. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - The 150-mm-thick wall of a gas-fired furnace is...Ch. 3 - Steel is sequentially heated and cooled (annealed)...Ch. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Prob. 3.77PCh. 3 - Prob. 3.78PCh. 3 - The strength and stability of tires may be...Ch. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - A long rod of 60-mm diameter and thermophysical...Ch. 3 - A long cylinder of 30-min diameter, initially at a...Ch. 3 - Work Problem 5.47 for a cylinder of radius r0 and...Ch. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - Prob. 3.92PCh. 3 - In Section 5.2 we noted that the value of the Biot...Ch. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Work Problem 5.47 for the case of a sphere of...Ch. 3 - Prob. 3.100PCh. 3 - Prob. 3.101PCh. 3 - Prob. 3.102PCh. 3 - Prob. 3.103PCh. 3 - Consider the plane wall of thickness 2L, the...Ch. 3 - Problem 4.9 addressed radioactive wastes stored...Ch. 3 - Prob. 3.106PCh. 3 - Prob. 3.107PCh. 3 - Prob. 3.108PCh. 3 - Prob. 3.109PCh. 3 - Prob. 3.110PCh. 3 - A one-dimensional slab of thickness 2L is...Ch. 3 - Prob. 3.112PCh. 3 - Prob. 3.113PCh. 3 - Prob. 3.114PCh. 3 - Prob. 3.115PCh. 3 - Derive the transient, two-dimensional...Ch. 3 - Prob. 3.117PCh. 3 - Prob. 3.118PCh. 3 - Prob. 3.119PCh. 3 - Prob. 3.120PCh. 3 - Prob. 3.121PCh. 3 - Prob. 3.122PCh. 3 - Consider two plates, A and B, that are each...Ch. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.125PCh. 3 - Prob. 3.126PCh. 3 - Prob. 3.127PCh. 3 - Prob. 3.128PCh. 3 - Prob. 3.129PCh. 3 - Consider the thick slab of copper in Example 5.12,...Ch. 3 - In Section 5.5, the one-term approximation to the...Ch. 3 - Thermal energy storage systems commonly involve a...Ch. 3 - Prob. 3.133PCh. 3 - Prob. 3.134PCh. 3 - Prob. 3.135PCh. 3 - A tantalum rod of diameter 3 mm and length 120 mm...Ch. 3 - A support rod k=15W/mK,=4.0106m2/s of diameter...Ch. 3 - Prob. 3.138PCh. 3 - Prob. 3.139PCh. 3 - A thin circular disk is subjected to induction...Ch. 3 - An electrical cable, experiencing uniform...Ch. 3 - Prob. 3.142PCh. 3 - Prob. 3.145PCh. 3 - Consider the fuel element of Example 5.11, which...Ch. 3 - Prob. 3.147PCh. 3 - Prob. 3.148PCh. 3 - Prob. 3.149PCh. 3 - Prob. 3.150PCh. 3 - In a manufacturing process, stainless steel...Ch. 3 - Prob. 3.153PCh. 3 - Carbon steel (AISI 1010) shafts of 0.1-m diameter...Ch. 3 - A thermal energy storage unit consists of a large...Ch. 3 - Small spherical particles of diameter D=50m...Ch. 3 - A spherical vessel used as a reactor for producing...Ch. 3 - Batch processes are often used in chemical and...Ch. 3 - Consider a thin electrical heater attached to a...Ch. 3 - An electronic device, such as a power transistor...Ch. 3 - Prob. 3.161PCh. 3 - In a material processing experiment conducted...Ch. 3 - Prob. 3.165PCh. 3 - Prob. 3.166PCh. 3 - Prob. 3.167PCh. 3 - Prob. 3.168PCh. 3 - Prob. 3.173PCh. 3 - Prob. 3.174PCh. 3 - Prob. 3.175PCh. 3 - Prob. 3.176PCh. 3 - Prob. 3.177P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- There are 2 options to be considered to form the insulation layer between the refractory brick and air space, which are fiberglass and firebrick. Calculate the minimum thickness required for the both fiberglass and firebrick. Which option do you recommend? Comment. State the assumption in your calculation. Based on your recommendation, calculate the temperature at each interface throughout the wall and draw a temperature variation diagram from inside wall surface to outside wall surface. * Refractory brick Fiberglass or firebrick? 0.5" Plaster Heat Ambient source Air spáce 4 Concrete block Figure 2arrow_forwardDerive heat diffusion equation for cylinder and circlearrow_forwardTwo balls (A and B) are made of the same material, heated to the same temperature and allowed to cool in the same medium "same h", when the diameter ratio (D/Dg = 2.0), then the cooling rate ratio (Q/QR) will bearrow_forward
- Solving Thermal Properties Related Problems Estimate the thermal diffusivity of butter at 20°C.arrow_forwardDon’t use Heissler charts to answer this question Heat sterilization of lumber, timbers, and pallets is used to kill insects to prevent their transfer between countries in international trade. This is analogous to food sterilization by heat. A typical requirement here is that the slowest heating point of any woodconfiguration be held at 56 °C for 30 minutes. Consider hot air heating of wooden boards that maintains their surface temperature at 70 °C. The boards are stacked outside and in the winter time they can be considered to be at 0 °Cwhen theyare brought in for heating. The thermal diffusivity of the wood is 9*10-8m2/s. a.Calculate the time from the start of heating for a 2.5 cm thick board to reach a sterilization temperature of 56 °C at its slowest heating point .b.Calculate the heating time when four such boards are stacked together. c.Calculate the ratio of the two heating times (for a single board versus when they are stacked), and explain the ratio. Note: You’re free to…arrow_forwardTwo inches of urethane foam will reduce heat loss close to 1000% when applied to a 2-inch diameter uninsulated steel pipe. Assume the pipe wall thickness is 0.25-inches, the pipe interior convective heat loss (hi) is 500 BTU/hr-ft2-oF, and the pipe outside convective heat loss ho 20 BTU/hr-ft2-oF, k steel is 25 BTU/hr-ft-oF, and k insulaton is 0.023 BTU/hr-ft-oF. (hint - calculate heat loss with and without insulation.arrow_forward
- What is the heat stored the fluid in a geothermal reservoir 15 km² and 350 m thick with a uniform porosity of 35% if the fluid is single phase liquid water at 270°C?arrow_forwardEstimate (a) the maximum, and (b) the minimum thermal conductivity values (in W/m-K) for a cermet that contains 81 vol% carbide particles in a metal matrix. Assume thermal conductivities of 21 and 64 W/m-K for the carbide and metal, respectively. (a) (b) i i W/m-K W/m-Karrow_forward4) In a tempering process, glass plate, which is initially at a uniform temperatureTi, is cooled by suddenly reducing the temperature of both surfaces to Ts Theplate is 20 mm thick, and the glass has a thermal diffusivity of 6x 10-7 m2/s.(a) How long will it take for the midplane temperature to achieve 50% of itsmaximum possible temperature reduction? Ans t= 63 s(b) If (Ti -T5) = 300°C, what is the maximum temperature gradient in the glass atthe above time? Ans. -2.36 104 °C/m.arrow_forward
- For metal-clad heating element of 6-mm diameter and emissivity ? = 1 is horizontallyimmersed in a water bath. The surface temperature of the metal is 255℃ under steady-stateboiling conditions. Estimate the power dissipation per unit length of the heater.arrow_forwardTransient cooling, What is the thermal length and why is it considered important in the transient cooling experimentarrow_forwardRecent studies show that the major energy consumption in Fijian villages is wood which is used for cooking on open fires. Typical consumption of wood is 1 kg/person/day. (a) Estimate the heat energy required to boil a 2 litre pot full of water. Assuming this to be the cooking requirement of each person, compare this with the heat content of the wood, and thus estimate the thermal efficiency of the open fire. (b) How much timber has to be felled each year to cook for a village of 200 people ? Assuming systematic replanting, what area of crop must the village therefore set aside for fuel use if it is not to make a net deforestation ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license