The front door of a dishwasher of width 580 mm has a vertical air vent that is 500 mm in height with a 20-mm spacing between the inner tub operating at 52°C and an outer plate that is thermally insulated
(a) Determine the heat loss from the tub surface when the ambient air is 27°C.
(b) A change in the design of the door provides the opportunity to increase or decrease the 20-mm spacing by 10 mm. What recommendations would you offer with regard to how the change in spacing will alter heat losses?
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Vector Mechanics for Engineers: Statics
Thermodynamics: An Engineering Approach
Machine Elements in Mechanical Design (6th Edition) (What's New in Trades & Technology)
Applied Statics and Strength of Materials (6th Edition)
Engineering Mechanics: Statics & Dynamics (14th Edition)
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
- A common arrangement for heating a large surface area is to move warm air through rectangular ducts below the surface. The ducts are square and located midway between the top and bottom surfaces that are exposed to room air and insulated, respectively. For the condition when the floor and duct temperatures are 30C and 80C, respectively, and the thermal conductivity of concrete is 1.4 W/m*K, calculate the heat rate from each duct, per unit length of the duct. Use a grid spacing with delta x = 2*(delta y), where delta y = 0.125L and L=150mm.arrow_forwardJ 5 A cylindrical steel tank with a diameter of 1.8m and a height of 2m, is insulated with polyurethane on its lateral faces and its lid. The insulation is 40 mm thick and covered with a thin layer of metal. The tank contains water that is kept warm by an electric heater in such a way as to maintain the inner surface of the tank at a temperature of 55C. The ambient air temperature is 10C and the external skin coefficient is 10 w/m2K. If the energy cost is $0.15/kwh. What is the monthly energy cost for water storage?arrow_forwardPlease fats. The answer in the box is incorrectarrow_forward
- 1. Heat Loss from saturated steam at 121.1°C. The line is covered with 25.4 mm of insulation. Assuming that the inside surface temperature of the metal wall is at 121.1°C and the outer sur- face of the insulation is at 26.7°C, calculate the heat loss for 30.5 m of pipe. Also, calculate the kg of steam condensed per hour in the pipe due to the heat loss. The average k for steel from Appendix A.3 is 45 W/m K and the k for the insulation is 0.182. a Steam Pipeline. A steel pipeline, 2-in. Schedule 40 pipe, contains A 381 Stearrow_forwardChips of width L _ 15 mm on a side are mounted to a substrate that is installed in an enclosure whose walls and air are maintained at a temperature of Tsur=T∞=25oC. The chips have an emissivity of ε=0.60 and a maximum allowable temperature of Ts=85oC. (a) If heat is rejected from the chips by radiation and natural convection, what is the maximum operating power of each chip? The convection coefficient may be approximated as h=11.7 W/m2K. (b) If a fan is used to maintain airflow through the enclosure and heat transfer is by only forced convection, with h=250 W/m2K, what is the maximum operating power?arrow_forwardProblem 1: A rectangular (70mm Wide x 60mm Tall x 180mm long) air heater is used to heat 0.04m3 incoming air (Q from 25°C to 60°C. To increase the surface area, the cross-section is split into 6 rectangular channels using aluminum fins, as shown below. The fins are evenly spaced and 2mm thick. What must the average surface temperature of the fins be to sufficiently heat the air?arrow_forward
- 2. Consider a vertical, single-pane window of width = height = 1 m. The interior surface is exposed to the air and walls of a room, which are each at 18°C. Under cold ambient conditions for which a thin layer of frost has formed on the inner surface, what is the heat loss through the window? As with most natural convection problems, radiation heat transfer may NOT be neglected. Use Trad =EσA (T-T4) with & = 0.90.arrow_forwardThe surface temperature of the hot side of the furnace wall is 1200°C. It is desired to maintain the outside of the wall at 38°C. A 152 mm refractory silica is used adjacent to the combustion chamber and 10 mm of steel covers the outside. What thickness of insulating bricks is necessary between refractory and steel, If the heat loss should be kept at 788 W/m2? use k = 13.84 W/m-K fro refractory silica; 0.15 for insulating brick, and 45 for steel. O 260 mm 280 mm O 240 mm 220 mmarrow_forwardAnswer correctly and quickly as possible please.arrow_forward
- 4. An insulated steam pipe located where the ambient temperature is 32°C, has an inside diameter of 50 mm with 10 mm thick wall. The outside diameter of the corrugated asbestos insulation is 125 mm and the surface coefficient of still air, ho= 12 W/m²-K. Inside the pipe is steam having a temperature of 150°C with film coefficient hi = 6000 W/m²-K. Thermal conductivity of pipe and asbestos insulation are 45 and 0.12 W/m-K respectively. Determine in SI unit the heat loss per unit length of pipe.arrow_forward1. A composite furnace wall is made up of a 12-in. lining of magnesite refractory brick, a 5-in.thickness of 85% magnesia, and a steel casing 0.10-in. thick. Flue gas temperature is 2200 F andthe boiler room is at 80 F. Gas side film coefficient is 15 Btu/hr-sq.ft-F and air side is 4.0.Determine:a. The thermal current Q/Ab. Interface temperaturesc. Effect on thermal current and inside refractory wall temperature if the magnesia insulation weredoubled.arrow_forward2. A steam line is covered with two successive layers of insulation. The 1.6 in thick layer in contact with the pipe is asbestos which is covered with a 1.4 inch thickness of magnesia insulation. The internal pipe diameter is 3 in, the pipewall thickness is 0.40 in made from common brick. The steam temperature is 850ºF, and the internal surface film coefficient is 50 Btu/hr.ft².F, while the ambient outer temperature is 105°F and the outer surface film coefficient is 3.0 Btu/hr.ft².F. Calculate the following: a. value of U based upon the external area of the magnesia covering, Btu/hr.ft2.F b. heat loss from the steam for a length of 190 feet of pipe, Btu/hrarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning