Common practice in chemical processing plants is to clad pipe insulation with a durable, thick aluminum foil. The functions of the foil are to confine the ban insulation and to reduce heat transfer by radiation to the surroundings. Because of the presence of chlorine (at chlorine or seaside plants), the aluminum foil surface, which is initially bright, becomes etched with in-service time. Typically, the emissivity might change from 0.12 at installation to 0.36 with extended service. For a 300—mm-diameter foil-covered pipe whose surface temperature is 90°C, will this increase in emissivity due to degradation of the foil finish have a significant effect on heat loss from the pipe? Consider two cases with surroundings and ambient air at 25°C: (a) quiescent air and (b) a cross-wind velocity of
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Introduction to Heat Transfer
Statics and Mechanics of Materials
Fox and McDonald's Introduction to Fluid Mechanics
Introduction To Finite Element Analysis And Design
Heating Ventilating and Air Conditioning: Analysis and Design
Engineering Mechanics: Statics & Dynamics (14th Edition)
- Determine the power requirement of a soldering iron in which the tip is maintained at 400C. The tip is a cylinder 3 mm in diameter and 10 mm long. The surrounding air temperature is 20C, and the average convection heat transfer coefficient over the tip is 20W/m2K. The tip is highly polished initially, giving it a very low emittance.arrow_forwardThree thin sheets of polished aluminum are placed parallel to each other so that the distance between them is very small compared to the size of the sheets. If one of the outer sheets is at 280C and the other outer sheet is at 60C, calculate the temperature of the intermediate sheet and the net rate of heat flow by radiation. Convection can be ignored.arrow_forward1.26 Repeat Problem 1.25 but assume that the surface of the storage vessel has an absorbance (equal to the emittance) of 0.1. Then determine the rate of evaporation of the liquid oxygen in kilograms per second and pounds per hour, assuming that convection can be neglected. The heat of vaporization of oxygen at –183°C is .arrow_forward
- 1.80 Describe and compare the modes of heat loss through the single-pane and double-pane window assemblies shown in the sketch below. Problem 1.80arrow_forward2 inch OD during a visit to a plastic sheet factory 60 m long section of a horizontal steam pipe passes from one end to the other without insulation is observed. While the temperature of the ambient air and its surfaces is 20 °C, the temperature measurements at several points are the average of the exposed surfaces of the steam pipe. indicates that the temperature is 160 °C. It is seen that the outer surface of the pipe is oxidized and The emissivity can be taken as 0.59. According to this; a) Calculate the heat loss in the steam pipe. b) The steam used is produced in a gas furnace operating with an efficiency of 59%. Factory 105500 It pays $1.10 per kJ of natural gas. If it is assumed that the factory works all year (365 days), for this facility Calculate the annual cost of heat losses in the steam pipe.arrow_forwardPlease explain these three questions . Thank youarrow_forward
- A manufacturing facility located at 32° N latitude has a glazing area of 60 m² facing west that consists of double pane windows made of clear glass (SHGC = 0.766). To reduce the solar heat gain in summer, a reflective film that will reduce the SHGC to 0.35 is considered. The cooling season consists of June, July, August, and September, and the heating season, October through April. The average daily solar heat fluxes incident on the west side at this latitude are 2.35, 3.03, 3.62, 4.00, 4.20, 4.24, 4.16, 3.93, 3.48, 2.94, 2.33, and 2.07 kWh/day · m² for January through December, respectively. Also, the unit costs of electricity and natural gas are $0.09/kWh and $0.45/therm., respectively. If the coefficient of performance of the cooling system is 3.2 and the efficiency of the furnace is 0.90, determine the net annual cost savings due to installing reflective coating on the windows. Also, determine the simple payback period if the installation cost of reflective film is $20/m². Answers:…arrow_forwardHeat lossarrow_forwardPROBLEM 4: A black thermocouple is inside a chamber with black walls. If the air around the thermocouple is at 20°C, the walls are at 100-C, and the heat transfer coefficient between the thermocouple and the air is 75 W/m²K, what temperature will the thermocouple read?arrow_forward
- After sunset, radiant energy can be sensed by a person standing near a brick wall. Such walls frequently have surface temperatures around 44 °C, and typical brick emissivity values are on the order of 0.92. What would be the radiant thermal flux per square metre from a brick wall at this temperature?arrow_forwardAs far as diathermy concern, we use microwaves to deposit its energy in the surface of fatty layers where as the infrared waves most of it energy is deposited in deep area with fatty layers. O true Falsearrow_forwardComplete answer thank youarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning