Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.63P
(a)
To determine
Fin heat rate by method: Analytical solution using average fin surface temperature
(b)
To determine
Heat rate by method: FEM when coefficients are based upon local temperatures, rather than an average fin surface temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a horizontal 5-mm-thick, 80-mm-long straight fin fabricated from plain carbon steel (k = 57 W/m-K, = 0.5). The base of
the fin is maintained at 100°C, while the quiescent ambient air and the surroundings are at 25°C. Assume the fin tip is adiabatic, and
estimate the fin heat rate per unit width, a', in W/m. Use an average fin surface temperature of 80°C to estimate the free convection
coefficient, and the linearized radiation coefficient,,, in W/m²K.
a's =
h=
ܐ
h₂ =
i
i
W/m
W/m².K
W/m².K
A black thermocouple
measures the temperature in a
chamber with black walls. If the
air around the thermocouple is
at 20°C, the walls are at 100°C,
and the heat transfer
coefficient between the
thermocouple and the air is 15
W/m?K, what temperature will
the thermocoule read?
An overhead 25-m-long, uninsulated industrial steam pipe of 162-mm diameter is routed through a building whose walls and air are at
25°C. Pressurized steam maintains a pipe surface temperature of 150°C, and the coefficient associated with natural convection is
h = 10 W/m².K. The surface emissivity is ε = 0.8.
(a) What is the rate of heat loss from the steam line?
(b) If the steam is generated in a gas-fired boiler operating at an efficiency of
MJ, what is the annual cost of heat loss from the line?
= 0.90 and natural gas is priced at Cg = $0.02 per
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Unique characteristics of biologically active materials such as fruits, vegetables, and other products require special care in handling. Following harvest and separation from producing plants, glucose is catabolized to produce carbon dioxide, water vapor, and heat, with attendant internal energy generation. Consider a single apple, spherical in shape, diameter 80 mm, which is ventilated with air at 5°C and h= 7.5 W/m2.K. Within the apple thermal energy is uniformly generated at 4000.0J/kg.day. The density and thermal conductivity of the apple are 840 kg/m3 and 0.5 W/m.K. a. Derive an equation for temperature distribution inside the apple. Use the boundary conditions @r R, T = Ts, and @r=0, dT/dr 0. Ts is the surface temperature of sphere to be determined using convection equation. b. Determine the apple center and surface temperatures.arrow_forwardJ 5 A cylindrical steel tank with a diameter of 1.8m and a height of 2m, is insulated with polyurethane on its lateral faces and its lid. The insulation is 40 mm thick and covered with a thin layer of metal. The tank contains water that is kept warm by an electric heater in such a way as to maintain the inner surface of the tank at a temperature of 55C. The ambient air temperature is 10C and the external skin coefficient is 10 w/m2K. If the energy cost is $0.15/kwh. What is the monthly energy cost for water storage?arrow_forwardTake you time but please provide correct answer.arrow_forward
- Can someone please help me to solve all of the following question showing all work and explanation as well as graphs needed in excel with formulas. Thank you!arrow_forwardQuestion 1 One hundred circumferential aluminum fins of rectangular profile are mounted on a 1.0-m tube having a diameter of 2.5 cm. The fins are 1 cm long and 2.0 mm thick. The base temperature is 180°C, and the convection environment is at 20°C with h=50 W/m2 . °C. Calculate the total heat lost from the finned-tube arrangement over the 1.0-m length.arrow_forward(B) A vertical cylinder 1.5m height and 18 cm in diameter is maintained at 100°C in an atmosphere environment of 20˚ C. Calculate the heat loss by free convection from the surface of the cylinder. Use the following data: p=1.06 kg/m² v=18.97×106 m²/s, k=0.1042 W/mK and Pr=0.6975 1/3 Nu =0.1 (Ra)¹/arrow_forward
- 1-mm-diameter cylindrical resistor, insulated with a sheath of thermal conductivity, k, of 0.12 W/m-K, is located in an evacuated enclosure. The surface emissivity of the sheath is 0.85. The resistor is maintained at 450 K and the enclosure is at 300 K. What is the radius of the sheath that maximises the rate of heat loss from the resistor? Evaluate the corresponding maximum heat rate per unit length of the resistor and the sheath surface temperature. Determine the value of the parameter hirerlk where h, is the linearised radiation heat transfer coefficient at the critical radius, rer. Comment on your results. State all assumptions made. What is the rate of heat loss per unit length from the uninsulated resistor if its surface emissivity is the same as the sheath surface of the insulated resistor?arrow_forwardA vertical oil-filled electric heating panel, 1.6m long by lm high, has a surface temperature of 84°C and convects freely from both sides. The 69 surrounding air is at 20°C. Using the correlation data given in the lectures, calculate the rate of heat transfer by natural convection. For air at 52°C , k =0.02816 W/mK, μ = 0.196 xl0-4kg/ms, Cp = 1006J/kgK, ρ = 1.086 kg/m3 Answer: 1126 W SHOW STEPS ON HOW TO REACH THISarrow_forwardA 212-mm-square, 15-mm-thick tile has the thermo-physical properties of Pyrex (ϵ = 0.83) and emerges from a curing process at an initial temperature of Ti = 145°C. The backside of the tile is insulated while the upper surface is exposed to ambient air and surroundings at 25°C. (a) Estimate the time required for the tile to cool to a final, safe-to-touch temperature of Tf = 42°C. Use an average tile surface temperature of T¯=(Ti+Tf)/2 to estimate the average free convection coefficient and the linearized radiation coefficient. How sensitive is your estimate to the assumed value for T¯? (b) Estimate the required cooling time if ambient air is blown in parallel flow over the tile with a velocity of 10 m/sarrow_forward
- What is true optionarrow_forwardQuestion 9 of 9 View Policies Show Attempt History Current Attempt in Progress * Your answer is incorrect. An annular aluminum fin of rectangular profile is attached to a circular tube having an outside diameter of 25 mm and a surface temperature of 400°C. The fin is 1 mm thick and 18 mm long, and the temperature and the convection coefficient associated with the adjoining fluid are 25°C and 25 W/m².K, respectively. Evaluate the properties of aluminum at 400 K. (a) What is the heat loss per fin? (b) If 200 such fins are spaced at 5-mm increments along the tube length, what is the heat loss per meter of tube length? (a) qf= (b) q' = i 38.9 8.36903 Physical Properties Mathematical Functions 0/2 W kW/m !!! ...arrow_forwardCan someone please help me to solve ALL of the following question showing all work and explanation as well as graphs needed in excel with formulas. USE EXCEL Thank you!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license