Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.13P
To determine
The average heat transfer coefficient for the plate by using result from the similarity solution to boundary layer equations and an empirical correlation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please solve ASAP
Partially-frozen ice cream is being placed in a package before completion of the freezing process. The package has dimensions of 8 cm by 10 cm by 20 cm and is placed in air- blast freezing with convective heat coefficient of 50 W/(m2 K) for freezing. The product temperature is -5°C when placed in the package, and the air temperature is -25°C. The product density is 700 kg/m3, the thermal conductivity (frozen) is 1.2 W/(m K), and the specific heat of the frozen product is 1.9 kJ/(kg K). If the latent heat to be removed during blast freezing is 100 kJ/kg, estimate the freezing time.
Number 3A food product with 73% moisture content in a 7 cm diameter can wants to be frozen. The density of the product is 970 kg/m³, the thermal conductivity is 1.2W/(m K), and the initial freezing temperature is -2.5°C. After 11 hours in the freezing medium -40°C, the product temperature becomes -10°C. Estimate the convection heat transfer coefficient of the freezing medium. Assume the can as an infinite cylinder.
h= answer in W/(m²K)
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A food product with 73% moisture content in a 7 cm diameter can wants to be frozen. The density of the product is 970 kg / m³, the thermal conductivity is 1.2 W / (m K), and the initial freezing temperature is -2.25 ° C. After 8 hours in the freezing medium -35 ° C, the product temperature becomes -10 ° C. Estimate the convection heat transfer coefficient of the freezing medium. Assume the can as an infinite cylinder. h = AnswerW / (m² K).arrow_forwardA food product with 73% moisture content in a 7 cm diameter can wants to be frozen. The density of the product is 970 kg / m³, the thermal conductivity is 1.2 W / (m K), and the initial freezing temperature is -2 ° C. After 11 hours in the freezing medium -30 ° C, the product temperature becomes -10 ° C. Estimate the convection heat transfer coefficient of the freezing medium. Assume the can as an infinite cylinder. h = W / (m² K).arrow_forwardA 2 m long cylindrical rod (radius r = 75 mm) is coated by an insulation layer (thickness: 2 mm). The rod is uniformly, heated by an electrical current. The air flows around the coated rod at 300 K and 4 m/s. Ignore radiation and the heat transfer at two ends of the rod. (a) What is the convection heat transfer coefficient h between the air and the coating outer surface? (b) Calculate the Biot number of the rod. (c) The electrical current is suddenly cut off (no heat generation any more). How long does it take for the rod temperature to drop from 1000 K to 600 K? Properties of the air: pa = 0.7 kg/m³, Cp,a= 1030 J/kg K, a = 38.8×106 m²/s, ka = 0.041 W/mK, da 56.7×106 m²/s, and Pra = 0.684.. = Properties of the rod: pr = 7832 kg/m³, Cpr = 559 J/kg K, and ky = 48.8 W/m.K. Properties of the coating: ke = 0.4 W/m.K.arrow_forward
- A food product with 73% moisture content is being frozen in a 7 cm-diameter can. The product density is 970 kg/m³, the thermal conductivity is 1.2 W/(m K), and the initial freezing temperature is -2.5°C. After 11 hour in the -40°C freezing medium, the product temperature is -10°C. Estimate the convective heat-transfer coefficient for the freezing medium. Assume the can has infinite height. a. h = ... W/m² Karrow_forwardThe main body of plenum is a steel vessel of diameter 0.1meters has two semicircle domed ends. During operation is will contain mix of fuel and air at approximately 250OC. The wall of the vessel is 0.03meters thick and the plenum is 0.45meters long. Estimate the rate of heat loss from the vessel when the outside air temperature is 45OC. The thermal conductivity of steel is 45 W/m K and the surface heat transfer coefficient on the air side is 8 W/m2 . On the inside it is 65W/m2 . If it was possible to clad the plenum calculate the reduction in the rate of heat loss. Assume the lagging would be 5mm thick and has a thermal conductivity of 0.05 W/m.arrow_forwardNumber 3 A food product with 80% moisture content in a 7 cm diameter can wants to be frozen. The density of the product is 1000 kg/m³, the thermal conductivity is 1.0 W/(m²K), and the initial freezing temperature is -1.75°C. After 8 hours in the freezing medium -25°C, the product temperature becomes -10°C. Estimate the convection heat transfer coefficient of the freezing medium. Assume the can as an infinite cylinder. h= answer in W/(m²K)arrow_forward
- Water at 25°C flows over a 30mm diameter cylinder with an embedded electrical heater. The cylinder is 1m in length with a surface temperature of 90°C. If the supplied power is 28 kW/m, what is the convection coefficient?arrow_forwardEXTERNAL FORCED CONVECTION A 10-cm-diameter, 30-cm-high cylindrical bottle contains cold water at 38°C. The bottle is placed in windy air at 27°C. The water temperature is measured to be 11°C after 45 min of cooling. Disregarding radiation effects and heat transfer from the top and bottom surfaces, estimate the average wind velocity. Please, I need the solution from fundamental concepts of how the heat flow behaves in the system. That it be answered with theory of the subjectarrow_forwardThe heat transfer from a 3 m diameter sphere to a 27 deg C air stream over a time interval of one hour is 4000 kJ. Estimate the surface temperature of the sphere if the heat transfer coefficient is 15 W/m^2K.arrow_forward
- Electronic components are attached under a thin square plate and the all the energy dissipated by components is removed by water flow over the top surface. The plate length is 0.18 m and the thermophysical properties of water may be approximated as: k = 0.620 W/mK, Pr = 5.2, ν = 0.96x10-6 m2/s Water flow velocity is 1.5 m/s and the amount of dissipated energy (q’’) from the components can be estimated as uniformly distributed heat flux of 80000 W/m2. One approach to analyze this problem is to assume the plate has an isothermal temperature as a boundary condition. Calculate the average isothermal plate temperature in °C for the given conditions blank If the boundary layer is ‘tripped’ and the flow over the plate is completely turbulent; what will be the average isothermal plate temperature in °C for this case?arrow_forwardWrite the comparison between forced and free convection in a non-isothermal system?arrow_forwardCylindrical Water cans (diameter 6.5cm and length 15cm) are to be cooled from initial temperature of 20' C by placing theme in a cooler with ambient temperature of 1 C. Compare the initial cooling rates when the cans are laid horizontally to when the cans are laid vertically. Take v= 15.55x10" m/s, k=0.024 W/mK and Pr-0.7. Nu = 0.53RA for horizontal orientation Nu = 0.59 Ra for vertical orientation 1/4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license