Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.116P
To determine
The initial convective heat transfer rate for batch and conveyor method.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a drying process, the moisture content of 35 kg of food will be reduced from 82% to 6%. The air used for drying enters the dryer at 80 ° C and exits at 70 ° C. To heat the air, 130 kg of saturated steam at 105 ° C is used. Food enters the dryer at 25 ° C and exits at 60 ° C. According to the ambient air temperature is 20 ° C; Calculate the drying efficiency based on evaporation latent heat and sensible heat.
(Specific heat of food = 3.30 kJ / kg ° C)
a cylindrical can of bean puree, has a diameter of 70 mm and height of 126 mm, and is initially at a uniform temperature of 25 ° C. The cans are stacked vertically inside a retort into which steam is introduced at 120 ° C. Calculate the temperature in the center of the can after a heating time of 0.55 h at 120 ° C. Now suppose the can is in the center of a vertical stack, insulated at its two ends by the presence of the remaining cans. (The heat capacity of the metal wall of the can can be neglected.) The heat transfer coefficient of steam is estimated to be 4640 W / m2 ° K. The physical properties of the bean are k = 0.750 W / m ° K and the thermal diffusivity = 2.007 x 10-7 m2 / s.a) Calculate the temperature in the center of the product.
After going through the production process, thin plates with a length of 0.5m are cooled by suspending
them vertically in a room with still air at 35°C. To maximize production throughput, the plates are hung
as close together as possible. There is a concern however, that if the plates are too close together, the
cooling will take longer, costing the company additional money. If the plates are initially at a
temperature of 75°C, please answer the following:
1. What is the minimum plate spacing that would avoid interference between their free convection
boundary layers?
2. What is the velocity in the x-direction at the upper edge of the plate?
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- "You did calculations using the simplified HAZ time-temperature formulas, assuming 3D heat flow, and are presenting your final internship conclusions to management. You realize with horror, in the middle of your presentation, that you forgot to label your calculated curves (below). Which curve is which? Pick the best answer A: "Plot 1 is HYPERFILL® and Plot 2 is p-GMAW. Since HYPERFILL® has the higher heat input, it cools more slowly." B: "Plot 2 is HYPERFILL® and Plot 1 is p-GMAW. Since HYPERFILL® has the faster travel speed of the two processes, it cools faster." C: "Plot 1 is p-GMAW and Plot 2 is HYPERFILL®. Since p-GMAW has the slower travel speed, it cools more slowly." D: "Plot 2 is p-GMAW and Plot 1 is HYPERFILL®. Since p-GMAW has the lower heat input, it cools faster" Both (A) and (D)arrow_forwardAfter going through the production process, thin plates with a length of 0.9m are cooled by suspending them vertically in an atmosphere of quiescent hydrogen at 80°C. To maximize production throughput, the plates are hung as close together as possible. There is a concern however, that if the plates are too close together, the cooling will take longer, costing the company additional money. If the plates are initially at a temperature of 110°C, what is the minimum plate spacing that would avoid interference between their free convection boundary layers? Thermos-physical properties are shown in the table below. Thermal Diffusivity [m2/s] 2.446*10-4 Kinematic Viscosity [m2/s] 1.573*104 Prandtl Number [-] 0.6969arrow_forwardPlease help me get the correct answer quickly, please. :((arrow_forward
- What is the rate of rice husk consumption of a 2-ton grain dryer requiring to dry paddy from 22 to 14% in 8 hrs. The dryer overall thermal efficiency is 45%. Assume a heat of vaporization for paddy of 600 kCal/kg of moisture evaporated and heating value for rice husk of 3,000 kcal/kg.arrow_forward2-D: A fin may be manufactured as an integral part of a surface by using a casting or extrusion process, or it may be separately brazed or adhered to the surface. From thermal considerations, which option is preferred? 2-E: What is the difference between steady-state and transient heat transfer processes? Give an example for each of them. 2-F: What is the physical interpretation of the Biot number? 2-G: For flow over a flat plate, sketch variation of local convective heat transfer coefficient, h(x), versus the distance along the plate x for laminar, transition, and turbulent flow regimes.arrow_forwardWhat do you think is the main difference of humidification process using fine mist or steam from liquid water spraying? Its advantages and disadvantages?arrow_forward
- Review Conceptual Example 5 before attempting this problem. To illustrate the effect of ice on the aluminum cooling plate, consider the drawing shown here and the data contained therein. Ignore any limitations due to significant figures. (a) Calculate the heat per second per square meter that is conducted through the ice-aluminum combination. (b) Calculate the heat per second per square meter that would be conducted through the aluminum if the ice were not present. Notice how much larger the answer is in (b) as compared to (a). (a) Number i (b) Number i -10.0°C Units Units Ice -0.0050 m Aluminum -25.0°C 0.0015 marrow_forwardStyles QUESTION 2: [15] A soldering iron has a cylindrical tip of 2.5 mm in diameter and 20 mm in length. With age and usage, the tip has oxidized and has an emissivity of 0.95. Assuming that the average convection heat transfer coefficient over the soldering iron tip is 35 W/m2-K, and the surrounding air temperature is 20°C, determine the power required to maintain the tip at 400°C. Air, 20°C T=400°C D= 2.5 mm L= 20 mmarrow_forwardIndustrial pipes One of the ways to keep a pipe warm is by means of a steam tracer, through which an electrical resistance is used around the pipe and in a helical shape throughout its diameter?arrow_forward
- Once upon a time, a student from a certain university wants to learn crystallization using a Swenson-Walker crystallizer. The capacity of this crystallizer is 0.6124 Ib/s of FeSO4 slurry leaves at 300 K. The flow mechanism of the cooling is counter current through the jacket and its temperature increases from 61 to 70 F. The overall heat transfer coefficient has been estimated to be 190 Sl units. (). Determine the requirement for cooling water in kg/hr (i) Let supposed that each crystallizer unit is 3.5 yard long and each metre of crystallizer provides26.91 ft? surface, how many crystallizer units will be required?arrow_forwardTransient cooling, What is the thermal length and why is it considered important in the transient cooling experimentarrow_forwardplease answer asap with correct answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license