Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.90P
(a)
To determine
The amount of paraffin melted over a period of 5 hours.
(b)
To determine
The Comparison of amount of energy used to melt the paraffin to the amount of energy needed to raise the average temperature of the liquid.
(c)
To determine
The amount of paraffin melted over a period of 5-hours.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Indirect Cooling With Liquid Nitrogen. You are designing a system to cool an insulated silver plate of dimensions 2.00 cm × 2.00 cm x 0.40 cm. One end of a thermally insulated copper wire (diameter D = 2.70 mm and length L = 12.0 cm) is dipped into a vat of liquid
nitrogen (T = 77.2 K), and the other end is attached to the bottom of the silver plate.
(a) If the silver plate starts at room temperature (73.0°F), what is the initial rate of heat flow between the plate and the liquid nitrogen
reservoir?
(b) Assuming the rate of heat flow calculated in part (a), estimate the temperature of the silver plate after 30.0 seconds.
Indirect Cooling With Liquid Nitrogen. You are designing a system to cool an insulated silver plate of dimensions 2.00 cm × 2.00 cm × 0.60 cm. One end of a thermally insulated copper wire (diameter D = 2.70 mm and length L = 18.0 cm) is dipped into a vat of liquid nitrogen (T = 77.2 K), and the other end is attached to the bottom of the silver plate.(a) If the silver plate starts at room temperature (65.0 °F), what is the initial rate of heat flow between the plate and the liquid nitrogen reservoir?(b) Assuming the rate of heat flow calculated in part (a), estimate the temperature of the silver plate after 30.0 seconds.
Number 4
A food product wants to be produced in a small round shape (pellet) by freezing it in a water blast freezer freezer. Air freezer operates at -25°C. The initial product temperature is 25°C. The pellet has a diameter of 1.2 cm, and a density of 980 kg/m³. The initial freezing temperature is -2.5°C. The latent heat of freezing of the product is 280 kJ/kg. The thermal conductivity of the frozen product is 1.9 W/(m °C). The convective heat transfer coefficient is 40 W/(m² K). Calculate the freeze time.
tf = answer in hour
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A cylindrical liquid oxygen (LOX) tank has a diameter of 1.22 m, a length of 6.1 m, and hemispherical ends. The boiling point of LOX is -179.4C. An insulation is sought that will reduce the boil-off rate in the steady state to no more than 11.3 kg/h. The heat of vaporization of LOX is 214 kJ/kg. If the thickness of this insulation is to be no more than 7.5 cm, what would the value of its thermal conductivity have to be?arrow_forwardA 0.6-cm diameter mild steel rod at 38C is suddenly immersed in a liquid at 93C with hc=110W/m2K. Determine the time required for the rod to warm to 88C.arrow_forward1.60 Two electric resistance heaters with a 20 cm length and a 2 cm diameter are inserted into a well-insulated 40-L tank of water that is initially at 300 K. If each heater dissipates 500 W, what is the time required for bringing the water temperature in the tank to 340 K? State your assumption for your analysis.arrow_forward
- A 1.2 m long vertical pipe, with a diameter 0.05 m, carrying a mixture of liquid water and vapor at atmospheric pressure is used to heat a very large liquid water tank, with water temperature maintained at 40 C. Calculate how much is the heat rate transferred from the pipe to the surrounding water at steady-state. (Consider the water in the tank at atmospheric pressure.)arrow_forwardConsider a sphere and cylinder that have the same volume and radius made of copper. Both of them are initially at the same temperature and are exposed to convection in the same environment "same h", then Select one: A. The Sphere will cool faster. B. Both will cool at the same rate. C. No enough information to determine which one will cool faster D. The cylinder will cool faster.arrow_forwardHeat transferarrow_forward
- (h) A single-glazed glass window pane is an arched shape, consisting of a semicircle of radius 0.5 m on top of a rectangle 1.0 m wide by 2.0 m high, with no joints. The glass pane is 5 mm thick. One side of the window is exposed to air at 20°C and the other side is exposed to air at 5°C. Assuming convective heat transfer on both sides of the window, and conduction through it, determine the total thermal resistance of the window pane and hence the rate of heat transfer through it. (Convection: h = 15 W/m²K; Glass: k = 1.1 W/mK)arrow_forwardSteel balls (diameter = 21 mm, p = 7833 kg/m , k = 54 W/m•°C, Cp = 0.465 kJ/kg.°C, and a = 1.474x10 m /s) are annealed by heating them first to 870°C in a furnace and then allowing them to cool slowly to 85°C in ambient air at 27°C. What is the total rate of heat %3D transfer from the balls to the ambient air, when 2367 balls are to be annealed per hour (kW)? Select one: A. 11.15 B. 9.12 C. 9.85 D. 8.38 E. 10.50arrow_forward2 (a) A short bronze cylinder of diameter 6 cm and length 12 cm is initially at 40°C and then plunged into a fluid at 200°C. The temperature at the centre of the cylinder is measured by a thermocouple to be 150°C after 5 minutes. What is the convective heat transfer coefficient between the cylinder and the fluid? The following properties of the bronze cylinder may be used: Thermal conductivity k = 26 W/m-K, density p = 8800 kg/m², and specific heat c = 420 J/kg-K. State and justify all assumptions made.arrow_forward
- A glass vessel with an insulating cover with a surface area of (Z + 100) cm² and (Z + 15) mm thick is filled with ice at 0° C and placed in a second vessel maintained at a temperature of 100° C. Find the mass of the ice that melts per minute when the flow of heat becomes steady. Latent heat of ice = 3.3 x 105 J/kg and K for glass = 1.0 W /mK. %3!arrow_forwardA,B heat and mass transfer problemarrow_forward11. A block of steel is uniformly heated from inside to maintain its temperature at 100 C. The block is a rectangular parallelepiped. The base of the block is a 3 cm by 3 cm square and the height of the block is 6 cm. We place this block in air at 25 C. Find the rate of heat loss from this block by natural convection. COn 11arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license