Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 9.35P
Airflow through a long, 0.2-m-square air conditioning duct maintains the outer duct surface temperature at 10°C. If the horizontal duct is uninsulated and exposed to air at 35°C in the crawlspace beneath a home, what is the heat gain per unit length of the duct?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A common arrangement for heating a large surface area is to move warm air through rectangular ducts below the surface. The ducts are square and located midway between the top and bottom surfaces that are exposed to room air and insulated, respectively. For the condition when the floor and duct temperatures are 30C and 80C, respectively, and the thermal conductivity of concrete is 1.4 W/m*K, calculate the heat rate from each duct, per unit length of the duct. Use a grid spacing with delta x = 2*(delta y), where delta y = 0.125L and L=150mm.
The interior of an oven is maintained at a temperature of 1500°F by means of suitablecontrol apparatus. The walls of the oven are 9 in. thick and constructed from a materialhaving a thermal conductivity of 0.18 Btu/hr-ft-°F. Calculate the heat loss for each squarefoot of wall surface per hour. Assume that the inside and outside wall temperatures are1500°F and 400°F respectively.
J 5
A cylindrical steel tank with a diameter of 1.8m and a height of 2m, is insulated with polyurethane on its lateral faces and its lid. The insulation is 40 mm thick and covered with a thin layer of metal. The tank contains water that is kept warm by an electric heater in such a way as to maintain the inner surface of the tank at a temperature of 55C. The ambient air temperature is 10C and the external skin coefficient is 10 w/m2K. If the energy cost is $0.15/kwh. What is the monthly energy cost for water storage?
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Convert the following quantities from English to SI units: a. 98 Btu/(hr-ft-F) b. 0.24 Btu/(lbm-F) C. 0.04 Ibm/...
Heating Ventilating and Air Conditioning: Analysis and Design
Steady state conduction rate to the warm compressor to the net power produces theoretically by thermodynamic ba...
Introduction to Heat Transfer
List several uses of the arbor press.
Machine Tool Practices (10th Edition)
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
Heat and Mass Transfer: Fundamentals and Applications
A number of common substances are
Some of these materials exhibit characteristics of both solid and fluid beha...
Fox and McDonald's Introduction to Fluid Mechanics
Select a mechanical component from Part 3 of this book (roller bearings, springs, etc.), go to the Internet, an...
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The air-conditioning system in a Chevrolet van for use in desert climates is to be sized. The system is to maintain an interior temperature of 20C when the van travels at 100 km/h through dry air at 30C at night. If the top of the van is idealized as a flat plate 6 m long and 2 m wide and the sides as flat plates 3 m tall and 6 m long, estimate the rate at which heat must be removed from the interior to maintain the specifiedarrow_forwardShow the thermal circuit by labeling all the thermal resistances. Calculate and tabulate the thermal resistances (assume Tavg=470 K for the air gaps). If q''rad= 0.25W/cm^2, what is the outer surface temperature of turnout coat for inner temperature of 66C.arrow_forwardOne vessel having a carbon-steel wall of thickness 5 mm carrying saturated steam and water at 423K. The vessel is insulated with magnesia of thickness 50 mm. If the ambient air temperature is 321 K, determine the heat loss from the vessel. Given: i. thermal conductivity of carbon steel is 52 W/m.K ii. thermal conductivity of magnesia is 0.5 W/m.K iii. surface coefficient of insulation surface is 3 W/m2.Karrow_forward
- Please fats. The answer in the box is incorrectarrow_forward1-mm-diameter cylindrical resistor, insulated with a sheath of thermal conductivity, k, of 0.12 W/m-K, is located in an evacuated enclosure. The surface emissivity of the sheath is 0.85. The resistor is maintained at 450 K and the enclosure is at 300 K. What is the radius of the sheath that maximises the rate of heat loss from the resistor? Evaluate the corresponding maximum heat rate per unit length of the resistor and the sheath surface temperature. Determine the value of the parameter hirerlk where h, is the linearised radiation heat transfer coefficient at the critical radius, rer. Comment on your results. State all assumptions made. What is the rate of heat loss per unit length from the uninsulated resistor if its surface emissivity is the same as the sheath surface of the insulated resistor?arrow_forwardQuestion 1 One hundred circumferential aluminum fins of rectangular profile are mounted on a 1.0-m tube having a diameter of 2.5 cm. The fins are 1 cm long and 2.0 mm thick. The base temperature is 180°C, and the convection environment is at 20°C with h=50 W/m2 . °C. Calculate the total heat lost from the finned-tube arrangement over the 1.0-m length.arrow_forward
- Please I want the correct answer DONT't copy the previous answers here they are wrong 922 W is wrong answer pleasearrow_forwardA heater coil is completely immersed in an oil bath that is insulated on all sides except for the top where the oil is in direct contact with the surrounding air that is maintained at a constant temperature, Oair. At t=0s, the coil is switched on and provides in watts of electrical power to the oil which has a thermal mass of moil and an initial temperature of Oinit-oil. The temperature of the oil is denoted by oil and the thermal resistance between the oil and air is Roil-air- a) Draw a schematic of the system clearly labeling the (assumed) directions of the heat transfer rates and the temperature at every node. b) Derive the governing differential equation for the temperature of the oil, oil- c) Where does Oinit-oil appear in the system schematic and how does it affect the governing equations? d) Derive an expression for the steady-state temperature of the oil as a function of the various system parameters.arrow_forwardCan someone please help me to solve ALL of the following question showing all work and explanation as well as graphs needed in excel with formulas. USE EXCEL Thank you!arrow_forward
- A 1 m x 1.25 m hot surface at 300 C is to be cooled by attaching a rectangular fins (k = 200 W/m K) with 30 mm length, 75 mm width and 5 mm base thickness. Fins are exposed to an ambient air condition of 25°C and heat transfer coefficient is 30 W/m K. If there are 2250 fins, calculate; a. The heat transfer rate from a single fin. b. The increase in the rate of heat transfer. c. Determine the overall effectiveness of the fins. с.arrow_forwardCan someone please help me to solve all of the following question showing all work and explanation as well as graphs needed in excel with formulas. Thank you!arrow_forwardThe wall of a box furnace is made of a composite material. Layer A is directly in contact with the combustion gases inside the furnace and it has a thickness of 0.023 m, a thermal conductivity of 132 W/m-K, and a cross-sectional area of 0.42 m2. On the other hand, Layer C corresponds to the outermost layer that is in direct contact with the ambient air. It has a thickness of 0.036 m, a thermal conductivity of 2 W/m-K, and has the same cross-sectional area as Layer A. In between Layer A and Layer C are two parallel layers: LayerB and Layer D. Layer B has the same cross-sectional area as Layer D. The thickness of Layer B and Layer D is 0.066 m. Layer B has a thermal conductivity of 13 W/m-K; while, Layer D has a thermal conductivity of 23 W/m-K. The combustion gases inside the furnace has a temperature of 373 ; while, the ambient air has a temperature of 30 . Finally, the convection heat transfer coefficients at the inside and outside of the wall are 111 W/m2-K and 22 W/m2-K…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license