Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.61P
To determine
Surface temperature in water and in air.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A camera used for monitoring marine life is placed in water where T.. -5°C and the
convection heat transfer coefficient h=1420 W/m²K. The camera is operating, but
its battery is experiencing thermal runaway, causing the camera to become very hot,
and there is volumetric heat generation, qe inside it. There is no heat generation
within the waterproof, protective enclosure surrounding it.
00:08
The camera is already compromised; however, its owner hopes to save the protective
case. Each interface (between layers A and B and between layers B and C) must not
exceed a temperature of 185°C, or these plastic, protective layers will begin to melt.
Approximate the camera and its casing as a composite, rectangular object with flat
surfaces. The device's total thickness, L=LA + 2LB +Lc, is much smaller than its area
(into the page); therefore, 1-D conduction can be approximated through the layers.
On the left surface of layer A, the temperature is measured to be T₁ = 8.0°C, and the
temperature on…
The surface temperature of a heater with a diameter of 50 mm in a horizontal position is 40°C. This heaterIt was immersed in water at 20°C. Find the heat lost per unit length of the heater.
Water at 25°C flows over a 30mm diameter cylinder with an embedded electrical heater. The
cylinder is 1m in length with a surface temperature of 90°C. If the supplied power is 28 kW/m,
what is the convection coefficient?
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Chips of width L _ 15 mm on a side are mounted to a substrate that is installed in an enclosurewhose walls and air are maintained at a temperature of Tsur=T∞=25oC. The chips have an emissivity ofε=0.60 and a maximum allowable temperature of Ts=85oC.(a) If heat is rejected from the chips by radiation and natural convection, what is the maximum operatingpower of each chip? The convection coefficient may be approximated as h=11.7 W/m2K.(b) If a fan is used to maintain airflow through the enclosure and heat transfer is by only forcedconvection, with h=250 W/m2K, what is the maximum operating power?arrow_forwardA horizontal copper plate 10 cm thick is initially uniform in temperature at 250◦C.The bottom surface of the plate is insulated. The top surface is suddenly exposed toa fluid stream at 80◦C. After 6 min the surface temperature has dropped to 150◦C.Calculate the convection heat-transfer coefficient that causes this drop.arrow_forwardTwo engines have cylinders which are geometrically the same in size and shape. The cylinders of engine A are surrounded with a normal water jacket filled with a water-ethylene glycol solution. The cylinders of engine B are insulated, making this an adiabatic engine. Other than temperatures, the engines are operated with the same steady-state conditions (as much as possible). (a) Which engine has higher volumetric efficiency? Why? (b) Which engine has higher thermal efficiency? Why? (c) Which engine has hotter exhaust? Why? (d) Which engine would be more difficult to lubricate? Why? (e) Which engine would be a better SI engine? Why?arrow_forward
- Chips of width L _ 15 mm on a side are mounted to a substrate that is installed in an enclosure whose walls and air are maintained at a temperature of Tsur=T∞=25oC. The chips have an emissivity of ε=0.60 and a maximum allowable temperature of Ts=85oC. (a) If heat is rejected from the chips by radiation and natural convection, what is the maximum operating power of each chip? The convection coefficient may be approximated as h=11.7 W/m2K. (b) If a fan is used to maintain airflow through the enclosure and heat transfer is by only forced convection, with h=250 W/m2K, what is the maximum operating power?arrow_forwardQ6: A large vertical plate 6.1 m high and 1.22 m wide is maintained at s constant temperature of 57:C and exposed to atmospheric air at 4-C. Caleulate the heat lost by the plate. Answers: Qarrow_forwardAn underwater sonar that maps the ocean bathymetry is encapsulated in a sphere with a diameter of 85 mm. During operation, the sonar generates heat at a rate of 300W. What is the sonar surface temperature when it’s located in a water column where the temperature is 15o C and the water current is 1 m/sec? The sonar was pulled out of the water without turning it off, thus, it was still working. The air temperature was 15o C and the air speed was 3 m/sec. What was the sonar surface temperature? Was there any reason for concern?arrow_forward
- Question(2): The ceiling outer surface temperature of an oven is 60°C. If the oven is in an environment of 20 °C and the ceiling is 1 m wide and 2 m long. find the heat loss from the furnace ceiling surface. NOTE: Use the physical properties of the air at 40°C for the environment.arrow_forwardIn a new residential project, you strongly believethat double-paned windows are ‘better’ than singlepaned windows. Compare the rate of heat loss betweensingle and double-paned windows (1.5 m x 1 m) if thethickness of each pane is (th = 0.4 cm) and (k = 0.9W/m.K). The indoor and outdoor temperatures are 18°C and 2 °C, respectively. Thickness of the air gapbetween the double-paned windows is (th = 1 cm), and(k = 0.022 W/m.K). Image credit: Windowwhirlarrow_forwardWhat’s the correct answer for this please ?arrow_forward
- Question 4: Consider a sphere with a diameter of 25 mm and a surface temperature of 60°C that is immersed in a fluid at a temperature of 30°C and a velocity of 2 m/s. Calculate the drag force and the heat rate when the fluid is (a) water and (b) air at atmospheric pressure. Explain why the results for the two fluids are so different.arrow_forwardAn overhead 25-m-long, uninsulated industrial steam pipe of 162-mm diameter is routed through a building whose walls and air are at 25°C. Pressurized steam maintains a pipe surface temperature of 150°C, and the coefficient associated with natural convection is h = 10 W/m².K. The surface emissivity is ε = 0.8. (a) What is the rate of heat loss from the steam line? (b) If the steam is generated in a gas-fired boiler operating at an efficiency of MJ, what is the annual cost of heat loss from the line? = 0.90 and natural gas is priced at Cg = $0.02 perarrow_forward. An oil is acting as a lubricant for a pair of cylindrical surfaces. The angular velocity of the outer cylinder is 7908 rpm. The outer cylinder has a radius of 5.06 cm, and the clearance between the cylinders is 0.027 cm. What is the maximum temperature in the oil if both wall temperatures are known to be 70°C? The physical properties of the oil are assumed constant at the following values: Viscosity Density 92.3 cP 1.22 g/cm³ Thermal conductivity 0.0055 (cal/s)/(cm °C)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license