In the central receiver concept of a solar power plant, many heliostats at ground level are used to direct a concentrated solar flux
(a) If all of the solar flux is absorbed by the receiver and a surface temperature of
(b) The surface temperature of the receiver is affected by design and operating conditions within the power plant. Over the range from 600 to 1000 K, plot the variation of the convection, radiation, and total heat rates as a function of
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Engineering Mechanics: Dynamics (14th Edition)
DESIGN OF MACHINERY
Vector Mechanics for Engineers: Statics
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Vector Mechanics for Engineers: Dynamics
Engineering Mechanics: Statics
- Determine the power requirement of a soldering iron in which the tip is maintained at 400C. The tip is a cylinder 3 mm in diameter and 10 mm long. The surrounding air temperature is 20C, and the average convection heat transfer coefficient over the tip is 20W/m2K. The tip is highly polished initially, giving it a very low emittance.arrow_forwardA long wire 0.7 mm in diameter with an emissivity of 0.9 is placed in a large quiescent air space at 270 K. If the wire is at 800 K, calculate the net rate of heat loss. Discuss your assumptions.arrow_forward1.26 Repeat Problem 1.25 but assume that the surface of the storage vessel has an absorbance (equal to the emittance) of 0.1. Then determine the rate of evaporation of the liquid oxygen in kilograms per second and pounds per hour, assuming that convection can be neglected. The heat of vaporization of oxygen at –183°C is .arrow_forward
- Liquefied natural gas (LNG) is transported around the globe using ships similar to thatshown in Figure QA3. This ship has four pressurised cylindrical steel tanks each ofradius of 20 m. The tanks are internally insulated with 30 cm of polyurethane foamwhich keeps the LNG at a constant -162 ºC. Take the effective sky temperature is 265K and the net radiative thermal energy exchange with the sky as 1x10^6 W. (a) Calculate the surface temperature of the end (facing the sun) of a tank.(b) Calculate the conductive heat transfer through the end (facing the sun)of a tank. DATA FOR QUESTION: Thermal conductivity, polyurethane foam = 0.02 W/mKStefan’s Constant = 5.67x10^-8 W/m^2K^4Emissivity, steel = 0.95 answers: a) 375K b) 22.1kWarrow_forwardLiquefied natural gas (LNG) is transported around the globe using ships similar to thatshown in Figure QA3. This ship has four pressurised cylindrical steel tanks each ofradius of 20 m. The tanks are internally insulated with 30 cm of polyurethane foamwhich keeps the LNG at a constant -162 ºC. Take the effective sky temperature is 265K and the net radiative thermal energy exchange with the sky as 1x10^6 W. (a) Calculate the surface temperature of the end (facing the sun) of a tank.(b) Calculate the conductive heat transfer through the end (facing the sun)of a tank. answers: a) 375K b) 22.1kWarrow_forwardHeat lossarrow_forward
- I need the answer as soon as possiblearrow_forwardQ.4 Determine radiation heat loss from a steel tube of outside diameter 60 mm and 5m long at a temperature of 327 °C if the tube is inside a square conduit made of brick having 0.4 m side as shown in given figure and temperature of 25 °C. (Take, ɛ(steel)= 0.8, e(brick)= 0.9. Steel tube(1) Brick(2) A 5889.25W 5656.47W C 5149.41W D 6125.84Warrow_forwardQUESTION 6 A simple solar collector in Figure Q1 is built by placing a 5 cm diameter clear plastic tube around a garden hose whose outer diameter is 1.6 cm. The hose is painted black to maximize solar absorption, and some plastic rings are used to keep the spacing between the hose and the clear plastic cover constant. During a clear day, the temperature of the hose is measured to be 65 °C, while the ambient air temperature is 26 °C. Determine the clear plastic tube temperature and the rate of heat loss from the water in the hose per meter of its length by natural convection. Solar radiation ||| 26°C Clear plastic tube Water Spacer Garden hose 65°C Figure Q1arrow_forward
- Give step-by-step calculation and explanation Consider a person sitting nude on a beach in Florida. On a sunny day, visible radiation energy from the sun is absorbed by the person at a rate of 30 kcal/h or 34.9 W. The air temperature is a warm 30 °C and the individual’s skin temperature is 32 °C. The effective body surface exposed to the sun is 0.9 m². (Assume this same area for sun absorption, radiative transfer, and convective loss. Is this a good assumption?) a. Find the net energy gain or loss from thermal radiation each hour. (Assume thermal radiative gain and loss according to the equation 6.51 in Herman and an emissivity of 1.) -(4). Equalion (6.51) - (40Tin)Eskin Aşkin (Tskin – Troom) dt = (4 x 5.67 x 10¬8 w/m²–K* x (307 K)')€skin Askin (Tskin – Troom). (6.52) b. If there is a 4 m/s breeze, find the energy lost by convection each hour. (Use Eq. 6.61 with eq. 6.63.) 1 Equation he(Tskin – Tair), (6.61) A dt he 10.45 – w + 10w0.5 (6.63) - c. If the individual’s metabolic rate is…arrow_forwardEmissivities of two large parallel plates maintained at 800°C and 300°C are 0.3 and 0.5 respectively. Find the net radiant heat exchange per square meter of the plates. If a polished aluminium shield (E = 0.05) is placed between them. Find the percentage of reduction in heat transferarrow_forwardMicrowave ovens operate by rapidly aligning and reversing water molecules within the food, resulting in volumetric energy generation and, in turn, cooking of the food. When the food is initially frozen, however, the water molecules do not readily oscillate in response to the microwaves, and the volumetric generation rates are between one and two orders of magnitude lower than if the water were in liquid form. (Microwave power that is not absorbed in the food is reflected back to the microwave generator, where it must be dissipated in the form of heat to prevent damage to the generator.) (a) Consider a frozen, 0.7-kg spherical piece of ground beef at an initial temperature of T₁ = -20°C placed in a microwave oven with To = 30°C and h = 15 W/m².K. Determine how long, in min, it will take the beef to reach a uniform temperature of T = 0°C, with all the water in the form of ice. Assume the properties of the beef are the same as ice, and assume 3% of the oven power (P = 1 kW total) is…arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning