The top surface
(a) Assuming the san oven surface temperature
(b) Explore the effect of the cover plate spacing on the convection heat loss and the cover plate temperature for spacings in the range
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Additional Engineering Textbook Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Mechanics of Materials (10th Edition)
Mechanics of Materials, 7th Edition
Introduction to Heat Transfer
Engineering Mechanics: Dynamics (14th Edition)
Engineering Mechanics: Statics & Dynamics (14th Edition)
- 3.10 A spherical shell satellite (3-m-OD, 1.25-cm-thick stainless steel walls) re-enters the atmosphere from outer space. If its original temperature is 38°C, the effective average temperature of the atmosphere is 1093°C, and the effective heat transfer coefficient is , estimate the temperature of the shell after reentry, assuming the time of reentry is 10 min and the interior of the shell is evacuated.arrow_forwardThe air-conditioning system in a Chevrolet van for use in desert climates is to be sized. The system is to maintain an interior temperature of 20C when the van travels at 100 km/h through dry air at 30C at night. If the top of the van is idealized as a flat plate 6 m long and 2 m wide and the sides as flat plates 3 m tall and 6 m long, estimate the rate at which heat must be removed from the interior to maintain the specifiedarrow_forwardI need the solution in hand writing …arrow_forward
- A common arrangement for heating a large surface area is to move warm air through rectangular ducts below the surface. The ducts are square and located midway between the top and bottom surfaces that are exposed to room air and insulated, respectively. For the condition when the floor and duct temperatures are 30C and 80C, respectively, and the thermal conductivity of concrete is 1.4 W/m*K, calculate the heat rate from each duct, per unit length of the duct. Use a grid spacing with delta x = 2*(delta y), where delta y = 0.125L and L=150mm.arrow_forwardChips of width L _ 15 mm on a side are mounted to a substrate that is installed in an enclosurewhose walls and air are maintained at a temperature of Tsur=T∞=25oC. The chips have an emissivity ofε=0.60 and a maximum allowable temperature of Ts=85oC.(a) If heat is rejected from the chips by radiation and natural convection, what is the maximum operatingpower of each chip? The convection coefficient may be approximated as h=11.7 W/m2K.(b) If a fan is used to maintain airflow through the enclosure and heat transfer is by only forcedconvection, with h=250 W/m2K, what is the maximum operating power?arrow_forwardasaparrow_forward
- A vertical oil-filled electric heating panel, 1.6m long by lm high, has a surface temperature of 84°C and convects freely from both sides. The 69 surrounding air is at 20°C. Using the correlation data given in the lectures, calculate the rate of heat transfer by natural convection. For air at 52°C , k =0.02816 W/mK, μ = 0.196 xl0-4kg/ms, Cp = 1006J/kgK, ρ = 1.086 kg/m3 Answer: 1126 W SHOW STEPS ON HOW TO REACH THISarrow_forwardA grandmother is concerned about reducing her winter heating bills. Her strategy isto loosely fit rigid polystyrene sheets of insulation over her double-pane windows rightafter the first freezing weather arrives. Identify the relevant heat transfer processes on acold winter night when the foamed insulation sheet is placed:(a) on the inner surface, and (13)3(b) on the outer surface of her window.arrow_forwardUnique characteristics of biologically active materials such as fruits, vegetables, and other products require special care in handling. Following harvest and separation from producing plants, glucose is catabolized to produce carbon dioxide, water vapor, and heat, with attendant internal energy generation. Consider a single apple, spherical in shape, diameter 80 mm, which is ventilated with air at 5°C and h= 7.5 W/m2.K. Within the apple thermal energy is uniformly generated at 4000.0J/kg.day. The density and thermal conductivity of the apple are 840 kg/m3 and 0.5 W/m.K. a. Derive an equation for temperature distribution inside the apple. Use the boundary conditions @r R, T = Ts, and @r=0, dT/dr 0. Ts is the surface temperature of sphere to be determined using convection equation. b. Determine the apple center and surface temperatures.arrow_forward
- The main body of plenum is a steel vessel of diameter 0.1meters has two semicircle domed ends. During operation is will contain mix of fuel and air at approximately 250OC. The wall of the vessel is 0.03meters thick and the plenum is 0.45meters long. Estimate the rate of heat loss from the vessel when the outside air temperature is 45OC. The thermal conductivity of steel is 45 W/m K and the surface heat transfer coefficient on the air side is 8 W/m2 . On the inside it is 65W/m2 . If it was possible to clad the plenum calculate the reduction in the rate of heat loss. Assume the lagging would be 5mm thick and has a thermal conductivity of 0.05 W/m.arrow_forwardimage 109arrow_forwardA double window called thermopane is one in which two layers of glass are used separated by a layer o dry stagnant air: In a given window, each of the glass layers is 6.35 mm thick separated by a 6.35 mm space of stagnant air. The thermal conductivity of the glass is 0.869 W/m K and that of air is 0.026 over the temperature range used. For temperature drop of 27.8 K over the system, calculate the heat loss for a window 0.914 m 1.83 m.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning