Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.100P
To determine
Expressions for the critical Rayleigh numbers,
minimized.
To Evaluate:
To Comment:The convection heat transfer rate associated with
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For each of the following cases, determine an appropriate characteristic length Lc and the corresponding Biot Bi number that is associated with the transient thermal response of the solid object. Say if the global capacitance approximation is va lid. If temperature information is not provided, evaluate properties T = 300K
a)oroidal shape with diameter D = 50mm and cross-sectional area AC = 5 mm², with thermal conductivity k = 2.3W / (mK) The surface of the toroid is exposed to a refrigerant corresponding to a convective coefficient eta = 50 W/( m2.k)
b)A long stainless steel heated bar (AISI 304), with rectangular cross section, and dimensions w = 3mm , W = 5mm and L = 100mm . the bar issubjected to a refrigerant that provides a heat transfer coefficient of h =15 W/(m2 K) on all exposed surfaces.
c)A long extruded aluminum tube (2024 Alloy) with internal dimensions and external w = 20 mm and W = 24 mm , respectively, suddenly submerged in water, with a convective coefficient of h =…
Don’t use Heissler charts to answer this question
Heat sterilization of lumber, timbers, and pallets is used to kill insects to prevent their transfer between countries in international trade. This is analogous to food sterilization by heat. A typical requirement here is that the slowest heating point of any woodconfiguration be held at 56 °C for 30 minutes. Consider hot air heating of wooden boards that maintains their surface temperature at 70 °C. The boards are stacked outside and in the winter time they can be considered to be at 0 °Cwhen theyare brought in for heating. The thermal diffusivity of the wood is 9*10-8m2/s.
a.Calculate the time from the start of heating for a 2.5 cm thick board to reach a sterilization temperature of 56 °C at its slowest heating point
.b.Calculate the heating time when four such boards are stacked together.
c.Calculate the ratio of the two heating times (for a single board versus when they are stacked), and explain the ratio.
Note: You’re free to…
An underwater sonar that maps the ocean bathymetry is encapsulated in a sphere with a diameter of 85 mm. During operation, the sonar generates heat at a rate of 300W. What is the sonar surface temperature when it’s located in a water column where the temperature is 15o C and the water current is 1 m/sec?
The sonar was pulled out of the water without turning it off, thus, it was still working. The air temperature was 15o C and the air speed was 3 m/sec. What was the sonar surface temperature? Was there any reason for concern?
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.4 To measure thermal conductivity, two similar 1-cm-thick specimens are placed in the apparatus shown in the accompanying sketch. Electric current is supplied to the guard heater, and a wattmeter shows that the power dissipation is 10 W. Thermocouples attached to the warmer and to the cooler surfaces show temperatures of 322 and 300 K, respectively. Calculate the thermal conductivity of the material at the mean temperature in W/m K. Problem 1.4arrow_forward1.15 A thermocouple (0.8-mm-diameter wire) used to measure the temperature of the quiescent gas in a furnace gives a reading of . It is known, however, that the rate of radiant heat flow per meter length from the hotter furnace walls to the thermocouple wire is 1.1 W/m and the convection heat transfer coefficient between the wire and the gas is K. With this information, estimate the true gas temperature. State your assumptions and indicate the equations used.arrow_forwardA brass plate has a circular hole whose diameter is slightly smaller than the diameter of an aluminum ball. Ifthe ball and the plate are always kept at the same temperature,(a) should the temperature of the system be increased or decreasedin order for the ball to fit through the hole? (b) Choose the bestexplanation from among the following:I. The aluminum ball changes its diameter more with temperature than the brass plate, and therefore the temperatureshould be decreased.II. Changing the temperature won’t change the fact that the ballis larger than the hole.III. Heating the brass plate makes its hole larger, and that willallow the ball to pass through.arrow_forward
- A long cylinder of radius, ro = 2.8cm, thermal conductivity k = 225 S mk thermal diffusivity 1.10 kJ and initial temperature, T = 200°C is kgK suddenly exposed to a convective environment at To 65°C with a convection coefficient, a = 6.82x105 m², specific heat, c h=510- W Watch your units on this one! m²K Determine the temperature at the center of the cylinder after t 130s, time, of exposure to the convective environment in degrees Celsius. 97.14C 95.30 198.08 70.94arrow_forwardNuclear fuel rods. A typical nuclear fuel rod contains circular uranium oxide (UO2) fuel pellets 10 mm in diameter and 5-mm thick stacked in a column to a length of 4 m inside a thin zirconium alloy tube, as shown below. The pellets generate heat uniformly throughout their volume due to nuclear fission, with a power density a (i.e., the heat power produced per unit volume of the pellet) that depends on their 235U enrichment. This heats up the water in the reactor to produce steam to drive the turbine. Assuming that the rim of the fuel pellet is maintained at a constant temperature Trim due to water cooling, show that the steady-state temperature profile T(r), where r is the radial distance from the centre of the pellet and fuel rod, 4. P(R? -r²; is given by: T(r) = Tim + 4k where k is the thermal conductivity of the pellet and R is its radius. partial stacked column of fuel pellets in rodarrow_forwardFor what situations will the lumped capacitance method be valid if a solid is in contact with a fluid? Circle all appropriate answers. (a) The resistance to conduction within the solid is small compared to the resistance to convection due to a fluid. (b) The temperature gradient within the solid is large. (c) The Biot number is small (less than 0.1). (d) All of the above. (e) None of the abovearrow_forward
- Hi, kindly solve this problem and show the solution. Thank youarrow_forward8.arrow_forwardA current of 200 A is passed through a stainless-steel wire [k=19 W/mK] 3 mm in diameter. The resistance of the steel may be taken as 0.099 ohm, and the length of the wire is 1 m. The wire is submerged in a liquid at 110◦C and experiences a convection heat-transfer coefficient of 4 kW/m2K. Calculate the center and surface temperatures of the wirearrow_forward
- A constant thermocouple wire of 0.4 mm dia is to be used to measure a temperature of 600°C. The wire is initially at 35*C. If the thermocouple should read 595°C in 2 seconds, determine the value of convection coefficient required. Density 8922 kg/m3, cp 410 J/kgk: Thermal conductivity = 22.7 W/mK.arrow_forwardConsider free convection from a cylinder at Ts=52°C in air at 1.0 atm and To = 2°C. The cylinder diameter is D=13.727mm. Find the heat transfer due to free convection. 1/6 2 Using NU₂ = 0,60 0.387 Rap + [1+ (0.559/Pr) 168/27 3.Om long horizontalarrow_forwardA plate is maintained at 74°C and this surface is facin an air having temperature of 30°C, then what will be th value of coefficient of volumetric expansion ß?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license