Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 9.43P
To determine
Rate of heat transfer to the compartment and outer surface temperature of the roof.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I am struggling with this question.
Part a and b
solve. heat transfer
Numerical method
Chapter 9 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 9 - The one-dimensional plane wall of Figure 3.1 is of...Ch. 9 - Using the values of density for water in Table...Ch. 9 - Consider an object of Characteristic length 0.01 m...Ch. 9 - To assess the efficacy of different liquids for...Ch. 9 - In many cases, we are concerned with free...Ch. 9 - The heat transfer rate due to free convection from...Ch. 9 - Consider a large vertical plate with a uniform...Ch. 9 - For laminar free convection flow on a vertical...Ch. 9 - Consider an array of vertical rectangular tins,...Ch. 9 - A number of thin plates are to be cooled by...
Ch. 9 - Prob. 9.11PCh. 9 - Prob. 9.13PCh. 9 - The plate described in Problem 9.14 has been used...Ch. 9 - Determine the average convection heat transfer...Ch. 9 - Consider a vertical plate of dimension 0.025m0.50m...Ch. 9 - During a winter day, the window of a patio door...Ch. 9 - Prob. 9.20PCh. 9 - A household oven door of 0.5-m height and 0.7-m...Ch. 9 - Consider a vertical, single-pane window of...Ch. 9 - Consider laminar flow about a vertical isothermal...Ch. 9 - Consider the conveyor system described in Problem...Ch. 9 - Prob. 9.25PCh. 9 - Consider an experiment to investigate the...Ch. 9 - The vertical rear window of an automobile is of...Ch. 9 - Prob. 9.28PCh. 9 - Prob. 9.29PCh. 9 - Prob. 9.30PCh. 9 - A refrigerator door has a height and width of...Ch. 9 - In the central receiver concept of a solar power...Ch. 9 - Prob. 9.34PCh. 9 - Airflow through a long, 0.2-m-square air...Ch. 9 - Prob. 9.36PCh. 9 - An electrical heater in the form of a horizontal...Ch. 9 - Consider a horizontal 6-mm-thick, 100-mm-long...Ch. 9 - Prob. 9.39PCh. 9 - Prob. 9.40PCh. 9 - Prob. 9.41PCh. 9 - Many laptop computers are equipped with thermal...Ch. 9 - Prob. 9.43PCh. 9 - At the end of its manufacturing process, a silicon...Ch. 9 - Integrated circuit (IC) boards are stacked within...Ch. 9 - Prob. 9.48PCh. 9 - Prob. 9.50PCh. 9 - Prob. 9.51PCh. 9 - Prob. 9.52PCh. 9 - Prob. 9.53PCh. 9 - Prob. 9.54PCh. 9 - Prob. 9.55PCh. 9 - Prob. 9.56PCh. 9 - Prob. 9.57PCh. 9 - A horizontal tube of 12.5-mm diameter with an...Ch. 9 - Prob. 9.60PCh. 9 - Prob. 9.61PCh. 9 - Prob. 9.63PCh. 9 - Prob. 9.64PCh. 9 - Common practice in chemical processing plants is...Ch. 9 - Consider the electrical heater of Problem 7.49. If...Ch. 9 - Prob. 9.67PCh. 9 - A billet of stainless steel, AISI 316, with a...Ch. 9 - Lone stainless steel rods of 50-mm diameter are...Ch. 9 - Hot air flows from a furnace through a...Ch. 9 - A biological fluid moves at a flow rate of...Ch. 9 - A sphere of 25-mm diameter contains an embedded...Ch. 9 - Prob. 9.79PCh. 9 - A vertical array of circuit boards is immersed in...Ch. 9 - Prob. 9.81PCh. 9 - The front door of a dishwasher of width 580 mm has...Ch. 9 - A natural convection air healer consists of an...Ch. 9 - A bank of drying ovens is mounted on a rack in a...Ch. 9 - Prob. 9.85PCh. 9 - Prob. 9.86PCh. 9 - Prob. 9.87PCh. 9 - To reduce heat losses, a horizontal rectangular...Ch. 9 - Prob. 9.89PCh. 9 - Prob. 9.90PCh. 9 - Prob. 9.91PCh. 9 - Prob. 9.92PCh. 9 - A 50-mm-thick air gap separates two horizontal...Ch. 9 - Prob. 9.94PCh. 9 - A vertical, double-pane window, which is 1 m on a...Ch. 9 - The top surface (0.5m0.5m) of an oven is 60°C for...Ch. 9 - Prob. 9.97PCh. 9 - Prob. 9.98PCh. 9 - Consider the cylindrical. 0.12-m-diamter radiation...Ch. 9 - Prob. 9.100PCh. 9 - A solar collector design consists of an inner tube...Ch. 9 - Prob. 9.104PCh. 9 - Prob. 9.105PCh. 9 - Liquid nitrogen is stored in a thin-walled...Ch. 9 - Prob. 9.108PCh. 9 - Prob. 9.109PCh. 9 - Prob. 9.110PCh. 9 - Prob. 9.111PCh. 9 - Prob. 9.114PCh. 9 - Prob. 9.115PCh. 9 - Prob. 9.116PCh. 9 - Prob. 9.117PCh. 9 - A water bath is used to maintain canisters...Ch. 9 - On a very Still morning, the surface temperature...Ch. 9 - Fuel cells similar to the PEM cell of Example 1.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The Subject is Basic Electrical Engineeringarrow_forward5. A pipe with an outside diameter of 2.5 inches is insulated with 2 inches layer of asbestos (k = 0.396 Btu- in/hr-ft²-°F), followed by a layer of cork 1.5 inches thick (k = 0.30 Btu-in/hr-ft²-°F). If the temperature at the inner surface of the pipe is 290°F and at the outer surface of the cork is 90°F, calculate the heat loss per 100 ft of insulated pipe. (Btu/hr)arrow_forwardQ11arrow_forward
- Question 5 Heat transfer A domestic refrigerator with inner dimensions of 0.7 m by 0.7 m at the base and height 1 m was designed to maintain a set temperature of 6 °C. The bodies consist of two 10- mm-thick layers of Aluminium (k = 225 W/mK) separated by a 30 mm polyurethane insulation (k=0.028 W/mK). If the average convection heat transfer coefficient at the inner and outer surfaces are 11.6 W/m2K and 14.5 W/m2K respectively, calculate: WAO Data: Hgt = L2 = ho3= W = k2 = hi = L1 = L3 3= T01= m, k;= k3 = To2 = %3D %3D %3D %3D %3D %3D %3D Area= 5.1 the individual resistance(R) for each thermal layer, as well as for the total of the refrigerator,arrow_forward1. For a steam pipe with a given diameter of 10 cm covered by two (2) layers of insulation. The first insulation has a thickness of 4 cm and a coefficient of thermal conductivity of 0.08 W/m.K. and the second insulation has a thickness of 3 cm and a thermal conductivity of 0.15 W/m.K. The steam main conveys steam at a pressure of 1.70 MPa with 25°C superheat. Outside temperature is 27°C. The pipe is 30 meters in length. (tsat @ 1.70 MPa = 204°C). Determine the following: a) The heat loss in KW b) Explain the concepts/principles that were considered and the factors that affected the condition of the above mentioned items (a & b).arrow_forwardThe temperature distribution for the plane wall is given in Fig. and here T1 and T2 are the temperatures on both sides of the 2 walls. The thermal conductivity of the wall is constant and its thickness is L. T=T1 Subtract the expression for heat generation per unit volume based on x, which represents the distance from the wall for which the equation is satisfied. At x=0, take the heat generation rate as q0. T -T, - = C, +C,x² +C¸x' T, -T, | %3D |arrow_forward
- Write clearly and explain.arrow_forwardA chip that is of length L = 5.5 mm on a side and thickness t = 2.0 mm is encased in a ceramic substrate, and its exposed surface is convectively cooled by a dielectric liquid for which h = 150 W/m² K and To = 20°C. . Th Chip, q, T₁, P, Cp The time is Substrate In the off-mode the chip is in thermal equilibrium with the coolant (T; = T). When the chip is energized, however, its temperature increases until a new steady state is established. For purposes of analysis, the energized chip is characterized by uniform volumetric heating with a = 9 x 106 W/m³. Assuming an infinite contact resistance between the chip and substrate and negligible conduction resistance within the chip, determine the steady-state chip temperature Tƒ. Following activation of the chip, how long does it take to come within 1°C of this temperature? The chip density and specific heat are p = 2000 kg/m³ and c = 700 J/kg-K, respectively. The steady-state chip temperature Tf is i S. °C.arrow_forwardThe first part of the question has been worked on, where the heat transfer was calculated to be 6.770 kilowatt, but the problem also asks to calculate the temperature of the outer most surface. What is the temperature of the outer most surface?arrow_forward
- What is the lumped capacitance method is usedarrow_forwardProblem 3: During summer, the temperature in Dhahran averages at 38°C for the entire day and night period. To maintain the inside of a building at the comfort level of 20°C, an Engineer suggested to use a commercial air conditioning (AC) system. The insulation and thermal design of the building is such that 28000 kJ/h of heat transfers to Inside 28000 Outside 20°C kJ/h 38°C Refrigerant loop Evaporator Condenser Compressor the building from outside. This amount of heat needs to be removed by the AC. The cost of electricity is 0.21 Ryial/kWh. Hint: 1 kWh-360OJ a. The suggested air conditioner requires a net power input to the compressor of 2 kW. Is the Engineer's suggestion valid? Calculate the coefficient of performance and the cost of electricity for one summer month. b. What is the minimum theoretical cost to operate the air conditioner? Discuss your results.arrow_forwardThe cooling load for a house is determined in part by using the same formulaused to find the heat load. The temperature difference used in designing acooling system is 25°F. The corner room shown does not face the sun so noadditional cooling load is required. The windows are single pane, and thewalls are brick veneer with 31⁄2 inches of insulation (R-11). The ceiling has31⁄2 inches of insulation (R-11), and the floor has no insulation. The room isbuilt over a vented crawl space with a vented attic above it. Find the coolingload for this room.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license